
Advances in Engineering Software 40 (2009) 438–444
Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft
Adaptive neuro-fuzzy computing technique for suspended sediment estimation

Ozgur Kisi a,*, Tefaruk Haktanir a, Mehmet Ardiclioglu a, Ozgur Ozturk a, Ekrem Yalcin b, Salih Uludag b

a Erciyes University, Engineering Faculty, Civil Engineering Department, 38039 Kayseri, Turkey
b Electrical Power Resources Survey and Development Administration, Ankara, Turkey

a r t i c l e i n f o
Article history:
Received 13 May 2008
Received in revised form 16 June 2008
Accepted 23 June 2008
Available online 12 August 2008

Keywords:
Suspended sediment
Neuro-fuzzy
Neural networks
Rating curves
Estimation
0965-9978/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.advengsoft.2008.06.004

* Corresponding author.
E-mail address: kisi@erciyes.edu.tr (O. Kisi).
a b s t r a c t

This paper investigates the accuracy of an adaptive neuro-fuzzy computing technique in suspended sed-
iment estimation. The monthly streamflow and suspended sediment data from two stations, Kuylus and
Salur Koprusu, in Kizilirmak Basin in Turkey are used as case studies. The estimation results obtained by
using the neuro-fuzzy technique are tested and compared with those of the artificial neural networks and
sediment rating curves. Root mean squared errors, mean absolute errors and correlation coefficient sta-
tistics are used as comparing criteria for the evaluation of the models’ performances. The comparison
results reveal that the neuro-fuzzy models can be employed successfully in monthly suspended sediment
estimation.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Correct estimation of sediment volume carried by a river is
important with respect to channel navigability, reservoir filling,
hydroelectric-equipment longevity, river aesthetics, fish habitat
and scientific interests. In environmental engineering, if the parti-
cles also transport pollutants, the estimation of river sediment load
has an additional significance.

McBean and Al-Nassri [26] investigated the uncertainty in sus-
pended sediment curves and they concluded that the practice of
using sediment load versus discharge is misleading because the
goodness of fit implied by this relation is spurious. They have in-
stead recommended that the regression can be established be-
tween discharge and sediment concentration.

Neural networks (NN) have been successfully applied in a num-
ber of diverse fields including water resources. In the hydrological
forecasting context, recent experiments have reported that artifi-
cial neural networks (ANNs) may offer a promising alternative
for rainfall–runoff modelling [36,31,9], streamflow prediction
[4,30,19,22,6,15], reservoir inflow forecasting [27,13,3], and sus-
pended sediment estimation [12,33,5,20,7,34,1]. Jain [12] used a
single ANN approach to establish daily sediment–discharge rela-
tionship and found that the ANN model could perform better than
the rating curve. Tayfur [33] developed an ANN model for sheet
sediment transport and indicated that the ANN could perform as
well as, in some cases better than, the physically-based models.
Cigizoglu [5] investigated the accuracy of a single ANN in estima-
ll rights reserved.
tion and forecasting of daily suspended sediment data. Kisi [20]
used different ANN techniques for daily suspended sediment con-
centration prediction and estimation and he indicated that multi-
layer perceptron could show better performance than the general-
ized regression neural networks and radial basis function. Cigizo-
glu and Kisi [7] developed some methods to improve ANN
performance in daily suspended sediment estimation. Tayfur and
Guldal [34] predicted total suspended sediment from precipitation.
Ardiclioglu et al. (2007) compared two different feed-forward
backpropagation algorithms in suspended sediment prediction.

Also, fuzzy logic has been used successfully for prediction of
suspended sediment during recent years [18,35,21,24,25]. Tayfur
[35] used a fuzzy logic algorithm for runoff-induced sediment
transport from bare soil surfaces. Kisi [21] developed fuzzy models
to estimate daily suspended sediments. He compared the fuzzy
estimates with those of the sediment rating curves and found that
the fuzzy models performed better than the rating curves. Kisi [24]
showed that fuzzy rule-based models using triangular membership
functions performs better than the sediment rating curve models
in suspended sediment concentration prediction. Lohani [25] used
fuzzy logic for deriving stage–discharge–sediment concentration
relationships. To the knowledge of the authors, no work has been
reported in the literature that investigates the accuracy of neuro-
fuzzy (NF) model in monthly suspended sediment estimation.

The main purpose of this study is to analyze the performances
of an adaptive NF computing technique for monthly suspended
sediment estimation. The monthly streamflow and suspended sed-
iment time series data belonging to two stations in Turkey are
used. This paper is organized as follows. Section 2 provides an
overview description of the NF, ANN and sediment rating curves
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Fig. 2. A basic structure of the ANFIS.
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(SRC). Section 3 provides the application of NF, ANN and SRC mod-
els on monthly streamflow sediment data and results. Finally, Sec-
tion 4 provides findings and concluding remarks.

2. Methods

2.1. Artificial neural networks (ANNs)

An ANN has one or more hidden layers, whose computation
nodes are correspondingly called hidden neurons of hidden units.
A three layered ANN structure is shown in Fig. 1. The hidden neu-
rons intervene between the external input and the network output
in some useful manner. The network is enabled to extract higher
order statistics by adding one or more hidden layers. In a rather
loose sense, despite its local connectivity due to the extra set of
synaptic connections and the extra dimension of network intercon-
nections, the ANN acquires a global perspective. The detailed the-
oretical information about ANN can be found in [11].

The ANN was trained using Levenberg–Marquardt technique
here due to that this technique is more powerful and faster than
the conventional gradient descent technique [10,23]. The numbers
of hidden layer neurons were found using simple trial–error meth-
od in all applications. The ANN networks training were stopped
after 50 epochs since the variation of error was too small after this
epoch.

2.2. Adaptive neuro-fuzzy inference system (ANFIS)

ANFIS was first introduced by Jang [14]. A basic ANFIS is illus-
trated in Fig. 2. ANFIS is a network structure consisting of a number
of nodes connected through directional links. Each node has a node
function with adjustable or fixed parameters. Learning or training
phase of network is a process to determine parameter values to
sufficiently fit the training data. The basic learning rule is the
well-known backpropagation method which seeks to minimize
sum of squared differences between network’s outputs and desired
outputs [17].

Depending on the types of inference operations upon ‘‘if-then
rules”, most fuzzy inference systems can be classified into three
types; Mamdani’s system, Sugeno’s system and Tsukamoto’s sys-
tem. Mamdani’s system is the most commonly used, meanwhile,
Sugeno’s system is more compact and computationally efficient;
the output is crisp, so, without the time consuming and mathemat-
ically intractable defuzzification operation, it is by far the most
popular candidate for sample-data based fuzzy modelling and it
lends itself to the use of adaptive techniques [32].

In first-order Sugeno’s system, a typical rule set with two fuzzy
IF/THEN rules can be expressed as [29].

Rule 1 : If x is A1 and y is B1; then f 1 ¼ p1xþ q1yþ r1 ð1Þ
Rule 2 : If x is A2 and y is B2; then f 2 ¼ p2xþ q2yþ r2 ð2Þ
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Fig. 1. A three-layer neural network structure.
Layer 1: Every node i in this layer is an adaptive node, repre-
senting membership functions described by generalized bell func-
tions, e.g.

Z1;i ¼ l1ðXÞ ¼
1

1þ jðX � c1Þ=a1j2b1
ð3Þ

where X = input to the node and a1, b1 and c1 = adaptable variables
known as premise parameters. The outputs of this layer are the
membership values of the premise part.

Layer 2: This layer consists of the nodes which multiply incom-
ing signals and sending the product out. This product represents
the firing strength of a rule. For example in Fig. 2

Z2;1 ¼ w1 ¼ l1ðxÞl3ðyÞ ð4Þ

Layer 3: In this layer, the nodes calculate the ratio of the ith
rules firing strength to the sum of all rules’ firing strengths

Z3;1 ¼ �w1 ¼
w1

w1 þw2 þw3 þw4
ð5Þ

Layer 4: This layer’s nodes are adaptive with node functions

Z4;1 ¼ �w1f1 ¼ �w1ðp1xþ q1yþ r1Þ ð6Þ

where �w1 is the output of Layer 3 and {pi,qi,ri} are the parameter set.
Parameters of this layer are referred to as consequent parameters.

Layer 5: This layer’s single fixed node computes the final output
as the summation of all incoming signals

f ¼
Xn

i¼1

�wifi ð7Þ

In the present study, the hybrid learning algorithm [14], which
combines backpropagation and the least-squares method was used
to rapidly train and adapt the fuzzy inference system. If the premise
parameters are fixed, the over all output can be given as a linear
combination of the consequent parameters. The output f can be
written as

f ¼ w1

w1 þw2
f1 þ

w2

w1 þw2
f2

¼ �w1ðp1xþ q1yþ r1Þ þ �w2ðp2xþ q2yþ r2Þ
¼ ð �w1xÞp1 þ ð �w1yÞq1 þ ð �w1Þr1 þ ð �w2xÞp2 þ ð �w2yÞq2 þ ð �w2Þr2

ð8Þ

which is linear in the consequent parameters p1, q1, r1, p2, q2, and r2.
Then we have
S set of total parameters,
S1 set of premise (nonlinear) parameters,
S2 set of consequent (linear) parameters.
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Given values of S1, we can plug P training data into Eq. (8) and
obtain the matrix equation:
Ah ¼ y ð9Þ

where h is an unknown vector whose elements are parameters in S2,
the set of consequent (linear) parameters.

Then the set S2 of consequent parameters can be identified with
the standard least-squares estimator (LSE):

h� ¼ ðATAÞ�1ATy ð10Þ

where AT is the transpose of A and (ATA)�1AT is the pseudo-inverse
of A if ATA is non-singular. The recursive least-square estimator
(RLS) can also be used to calculate h*. More information for ANFIS
can be found in related literature [14].

In each application, different number of membership functions
is tried and the best one that gives the minimum squared error is
selected.

2.3. Sediment rating curve (SRC)

A rating curve consists of an equation or graph, relating sedi-
ment discharge or concentration to stream discharge, which can
be used to estimate sediment loads from the streamflow record.
The sediment rating curves generally represent a functional rela-
tionship of the form:

S ¼ aQ b ð11Þ

where S is suspended sediment load and Q is stream discharge [28].
a and b values for a particular stream are determined from data by
establishing a linear regression between (logS) and (logQ). After
log-transformation to the arithmetic domain and application of
the Ferguson [8] correction factor, the sediment load occurring at
a specific discharge can be estimated using the following
expression:

S ¼ CF � a � Qb ð12Þ

where CF is the log-transformation bias correction factor.
Specifically,

CF ¼ e2:65s2 ð13Þ

where e is the exponential function and s is the standard error of the
regression equation. In the applications, first sediment rating curve
(Eq. (11)) is denoted as SRC1 and the second one with bias correc-
tion factor (Eq. (12)) is denoted as SRC2.
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3. Application and results

The monthly streamflow and suspended sediment time series
data belonging to Kuylus Station (station no: 1524) and Salur Kopr-
usu Station (station no: 1528), on Kizilirmak River in Kizilirmak Ba-
sin, Turkey are used in the study. The locations of the stations are
illustrated in Fig. 3. The drainage areas at these sites are 3935 km2

and 30,589 km2 and gage datums are 475 and 494 m above sea le-
vel for the Kuylus and Salur Koprusu stations, respectively. For
these stations, the data were obtained from the report of Turkey
General Directorate of Electrical Power Resources Survey and
Development Administration.

In each application, two sets of data are used. The first data set
is used to train the NF and ANN models, and is referred to as the
training set. The second data set is used to determine how well
the trained models performed. For the Kuylus Station, 180 monthly
data (80% of the whole data) are used for training and the remain-
ing 45 months (20% of the whole data) for testing. For the Salur Sta-
tion, 226 monthly data are used for training and the remaining 57
months for testing. The training and test data periods are March
1981–December 1995 and January 1996–September 1999 for the
Kuylus Station, respectively. For the Salur Koprusu, the data of
December 1972–September 1992 and October 1992–April 1997
are respectively used for the training and testing. The data are
not continuous in both gauging sites, since the observations for
some months in-between are not available for technical reasons.
This decreases the models’ prediction performances.

The statistical parameters of the streamflow and sediment data
for the Kuylus and Salur Koprusu stations are given in Table 1. In
the table, the xmean, Sx, Cv, Csx, xmax and xmin denote the mean, stan-
dard deviation, variation coefficient, skewness, maximum and
minimum, respectively. It can be seen from the skewness coeffi-
cients in the eighth column of the table (Table 1) that the stream-
flow and sediment data show scattered distribution. The variation
coefficients are also not low for the both stations. The maximum–
mean ratio (xmax/xmean) for sediment series in the training period is
also quite high (55 and 11 for the Kuylus and Salur Koprusu,
respectively). All these statistics indicate the complexity of the dis-
charge–sediment phenomenon. In the training sediment data, min-
imum and maximum values fall in the ranges 413 t–213,214 t for
the Salur Koprusu Station. However, the maximum of the testing
set of the sediment data of the Salur Koprusu Station is 348,506 t
which is much higher than the corresponding training set’s value.
This may cause some extrapolation difficulties in prediction of high
sediment values of the Salur Koprusu Station [6].

Seven different neuro-fuzzy (NF) models are established to esti-
mate suspended sediment from streamflow. Each NF model has
different number of membership functions (between 2 and 8).
The triangle and Gaussian membership functions are tried for each
NF model. The NF models are compared with two different ANN
and SRC models. Four different program codes, including neural
networks and fuzzy logic toolboxes, are written in MATLAB lan-
guage for the simulations of NF, ANN, SRC1 and SRC2 techniques.
SRC1 and SRC2 formulas obtained for the Kuylus Station (Eqs.
(14) and (15)) and Salur Koprusu Station (Eqs. (16) and (17))
respectively are:

S ¼ 1:8617 � Q 2:0126 ð14Þ
S ¼ 0:8617CF � Q 1:3549 ð15Þ
S ¼ 1:4196 � Q 13:0897 ð16Þ
S ¼ 0:4196CF � Q 3:0555 ð17Þ

CF values are calculated as 1.4774 and 1.4476 in Eqs. (15) and (17),
respectively.

The root mean square errors (RMSE), mean absolute errors
(MAE) and correlation coefficient (R) statistics are used as the com-
paring criteria in these applications. The RMSE, MAE and R statis-
tics are denoted as below

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

ðYiobserved � YipredictedÞ2
vuut ð18Þ

MAE ¼ 1
N

XN

i¼1

jYiobserved � Yipredictedj ð19Þ

in which N is the number of data, Yi is the sediment concentration.
The correlation coefficient between two variables, say x and y,

whose n pairs are available, can be calculated by

R ¼
Pn

i¼1ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxi � �xÞ2

Pn
i¼1ðyi � �yÞ2

q ð20Þ

where the bar denotes the mean of the variable. The R shows the de-
gree which two variables are linearly related to. Different types of
information about the predictive capabilities of the model are mea-
sured through MSE and MAE. The MSE sizes the goodness of the fit



Fig. 3. The location of the Kuylus (station no: 1524) and Salur Koprusu (station no: 1528), on Kizilirmak River in Kizilirmak Basin.
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related to high sediment values whereas the MAE measures a more
balanced perspective of the goodness of the fit at moderate sedi-
ments [16].

The RMSE, MAE and R statistics of NF, ANN and SRC models for
the Kuylus Station are given in Table 2. In this table trimf and
gaussmf denote the triangle and Gaussian membership functions,
respectively. NF(2, trimf) denotes a NF model having two triangle
membership functions. The ANN1 shows an ANN model whose
hidden and output layers having logarithm sigmoid activation
function. The ANN2 model uses linear function in its output layer.
The ANN1(6) denotes an ANN model comprising 6 hidden nodes.
The hidden layer node numbers of each ANN model are determined



Table 1
The statistical parameters of data set for the stations

Data set Station Basin area (km2) Data type xmean Sx Cv (Sx/xmean) Csx xmax xmin
xmax
xmean

Training Kuylus 3935 Flow (m3/s) 17.7 22.5 1.27 3.71 174 0.64 9.88
Sediment (t) 1708 7917 4.63 9.82 93,903 0.48 54.9

Salur Koprusu 30,589 Flow (m3/s) 117 64.1 0.55 1.53 392 14.9 3.36
Sediment (t) 18,719 28,505 1.52 3.36 213,214 413 11.4

Testing Kuylus 3935 Flow (m3/s) 15.6 15.9 1.03 1.81 65.8 0.31 4.23
Sediment (t) 1002 2744 2.74 4.53 16,344 1.28 16.3

Salur Koprusu 30,589 Flow (m3/s) 108 66.9 0.62 2.17 388 41.8 3.59
Sediment (t) 22,503 52,824 2.35 4.86 348,506 1157 15.5

Table 2
The test performances of the models in suspended sediment estimation – Kuylus
Station

Model RMSE (t) MAE (t) R

NF(2, trimf) 1763 591 0.768
NF(3, trimf) 1746 582 0.775
NF(4, trimf) 1965 831 0.742
NF(5, trimf) 1771 639 0.760
NF(6, trimf) 1720 600 0.785
NF(7,gaussmf) 1822 571 0.764
NF(8,gaussmf) 1809 567 0.769
ANN1(6) 1823 567 0.766
ANN2(6) 1823 577 0.762
SRC1 2017 573 0.777
SRC2 2021 574 0.777
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Fig. 4. Plotting of prediction performances for the test period using NF, ANN1, SRC1
and SRC2 – Kuylus Station.
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Fig. 5. Plotting of prediction performances for the test period using NF, ANN1, SRC1
and SRC2 (logarithm scaled) – Kuylus Station.
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after trying various network structures since there is no theory yet
to tell how many hidden units are needed to approximate any gi-
ven function.

It can be seen from Table 2 that the NF(6, trimf) model having
six triangle membership functions has the lowest RMSE (1720 t)
and the highest R value (0.785). It can be said that NF(6, trimf) mod-
el estimates high sediment values better than the ANN and SRC
models. However, the NF(8,gaussmf) and ANN1(6) model perform
better than the NF(6, trimf) model from the MAE viewpoint.
ANN1 and ANN2 models show almost same accuracy and their per-
formances seem to be better than the SRC models.

The scatter plots of observed suspended sediments and the esti-
mates of the NF(6, trimf), ANN1, SRC1 and SRC2 models are given in
Fig. 4. As can be seen from this figure, the fit line of the NF closer to
the exact (45�) line with a higher R value than those of the ANN1,
SRC1 and SRC2 models. The logarithm scaled scatter plots are also
provided in Fig. 5 for better representation. As seen from the scat-
ter plots, the NF model estimates are less scattered in relative to
the other models.

The estimation of total sediment load is also considered for
comparison due to its importance in reservoir management. The
NF model predicts the observed total sediment load 45,098 t as
41,872 t, with an underestimation of 7%, while the YSA1, SRC1
and SRC2 compute as 40,720 t, 26,880 t and 26736 t, with underes-
timations of 10%, 40% and 41%, respectively. YSA1 model also
seems to be much better than the SRC models in estimating total
sediment load.

The results are also tested by using one way analysis of variance
(ANOVA) and t-test for verifying the robustness (the significance of
differences between the model estimates and observed values) of
the models. Both tests are set at a 95% significant level. Namely,
differences between observed and estimated values are considered
significant when the resultant significance level (p) is lower than
the 0.05 by use of two-tailed significance levels. The statistics of
the tests are given in Table 3. The NF model yields small testing
values (0.022 and 0.147) with a high significance level (0.884) for
the ANOVA and t-test, respectively. According to the test results,
the NF seems to be more robust (the similarity between the ob-
served sediments and NF estimates are significantly high) in sus-
pended sediment estimation than the others. The ANN1 model is
also better than the SRC1 and SRC2.



Table 3
Analysis of variance and t-test for suspended sediment estimation in test period –
Kuylus Station

Method ANOVA t-Test

F-
statistic

Resultant significance
level

t-
Statistic

Resultant significance
level

NF 0.022 0.884 0.147 0.884
ANN1 0.043 0.837 0.206 0.837
SRC1 0.839 0.362 0.916 0.364
SRC2 0.853 0.358 0.924 0.359
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Fig. 6. Plotting of prediction performances for the test period using NF, ANN1, SRC1
and SRC2 – Salur Koprusu Station.
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The RMSE, MAE and R statistics of NF, ANN and SRC models for
the Salur Koprusu Station are represented in Table 4. Table 4 re-
veals that the NF(8, trimf) having eight triangle membership func-
tions performs better than the other models from the RMSE
viewpoint. However, the lowest MAE value belongs to NF(5, trimf)
model. SRC1 and SRC2 models have the highest R value. Note that
the R term provides information for linear dependence between
observations and corresponding estimates. Therefore, it is not al-
ways expected that R is in agreement with performance criteria
such as the RMSE. For example, in the case of two time series such
as (Xi = 1,2,3, . . . ,10; Yi = 20,40,60, . . . ,200) the R between these
two series is equal to 1 whereas the RMSE value is quite high. An
R value equal to 1 does not guarantee that a model captures the
behavior of the investigated time series. An ANN1 model seems
to be better than the SRC models according to the RMSE and
MAE criteria. In the study the main model performance criterion
is the RMSE. The best model is selected by considering this
criterion.

The estimates of the NF(8, trimf), ANN1, SRC1 and SRC2 models
are shown in Fig. 6, in the form of scatter plot. From Fig. 6, it can be
said that the fit line of the NF model closer to the 45� line than
those of the other models. SRC2 provides the worst estimates.
Fig. 7 shows the logarithm scaled scatter plots of each model.
The accuracy of NF model seems to be better than the ANN1 and
SRC in estimation of high sediment values. The underestimations
of the SRC2 model are obviously seen.

The NF model predicts the total sediment load as 1,094,262 t in-
stead of measured 1,219,456 t, with an underestimation of 10%,
while the YSA1, SRC1 and SRC2 compute as 902,693 t, 608,055 t
and 205,459 t, with underestimations of 26%, 50% and 83%, respec-
tively. NF estimate is closest to the observed one. The statistics of
the ANOVA and t-test are given in Table 5. The NF model seems
to be more robust than the ANN1 and SRC models in estimation
of suspended sediment. The ANN1 also seems to be much better
than the SRC models.

To summarize, the NF and ANN1 models seem to be more ade-
quate than the SRC in modelling suspended sediment. Suspended
sediment estimation requires nonlinear mapping. The SRC models
Table 4
The test performances of the models in suspended sediment estimation – Salur
Koprusu Station

Model RMSE (t) MAE (t) R

NF(2, trimf) 40,827 15,663 0.752
NF(3,gaussmf) 41,667 16,000 0.728
NF(4, trimf) 41,570 15,889 0.748
NF(5, trimf) 42,522 15,658 0.640
NF(6,gaussmf) 43,429 15,947 0.573
NF(7,gaussmf) 41,709 16,303 0.628
NF(8, trimf) 39,641 15,926 0.686
ANN1(2) 41,504 15,897 0.740
ANN2(6) 48,563 16,809 0.388
SRC1 46,239 16,514 0.760
SRC2 53,105 19,004 0.760

Table 5
Analysis of variance and t-test for suspended sediment estimation in test period –
Salur Koprusu Station

Method ANOVA t-test

F-
statistic

Resultant significance
level

t-
Statistic

Resultant significance
level

NF 0.081 0.777 0.284 0.777
ANN1 0.648 0.422 0.805 0.423
SRC1 2.563 0.112 1.601 0.115
SRC2 7.157 0.009 2.675 0.010
are not adequate in view of the complexity of the problem since it
assumes linear relationship between logS and logQ values. Such
models require that the variables are normally distributed. It is evi-
dent from Table 1 that the streamflow and sediment data have
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scattered distribution (see Csx values in Table 1). The main advan-
tages of using ANNs are their flexibility and ability to model non-
linear relationships. Mathematically, an ANN may be treated as
an universal approximator [2]. This technique has already become
a prospective research area with great potential due to the ease of
application and simple formulation. On the other hand, the NF
models combine the linguistic representation of a fuzzy system
with the learning ability of the ANN. Therefore, they can be trained
to perform an input/output mapping, just as with an ANN, but with
the additional benefit of being able to provide the set of rules on
which the model is based. This gives further insight into the pro-
cess being modelled [29]. In general, the NF model can be consid-
ered to be relatively superior to the ANN and SRC models. This
observation would be of much use in hydrological modelling stud-
ies where estimates of sediment values are not available. The mod-
el can be integrated as a module in general hydrological analysis
models.

4. Conclusions

The potential of an adaptive neuro-fuzzy computing technique
in monthly suspended sediment estimation has been illustrated
in this paper. The estimates of the NF models were compared with
those of the ANN and SRC models. Based on the comparison results,
the NF technique was found to perform better than the other mod-
els. The accuracy of the NF model in total sediment load estimation
was also investigated and results were compared with those of the
ANN and SRC models. Comparisons revealed that the NF model had
the best accuracy in total sediment load estimation. The ANN1
model also gave better estimates than the SRC1 and SRC2.

In the present study, the ANFIS model was compared with the
ANN and SRC models using the standard backpropagation algo-
rithm. If the other training algorithms (conjugate gradient, quasi-
Newton etc.) were used, the results from the ANFIS model may
turn out to be better. The estimation of monthly suspended sedi-
ment is very difficult, and there is room for much improvement.
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