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Density differences may occur because of temperature differentials, suspended sediments, dissolved salts
or other chemicals. Most of the large surface reservoirs are stably stratified throughout most, or all, of the
year. One of the means of assisting the management is to allow a selective withdrawal from the reservoir.
And while an intake is used for withdrawal (from the lower layer), a maximum discharge is required not
allowing the uptake of the upper layer fluids. The value of the intake’s vertical distance from the upper
layer elevation (submergence) when the upper layer fluids begin to be drawn into the intake is known as
‘critical submergence’. In this study, the critical submergence for a circular intake pipe in a stratified body
(which has different layer thickness) is investigated. Experiments were conducted on a vertically flowing
downward intake pipe in a still-water reservoir. Artificial neural network (ANN) models and formulas,
which are found by the theoretical analysis of critical spherical sink surface (CSSS), are used for the
analysis of experimental results. The CSSS has the same centre and discharge as the intake. The ANN
model and CSSS results are compared with the experimental results.

Keywords: critical spherical sink surface; critical submergence; intake; artificial neural networks;
stratified fluid medium

1. Introduction

Reservoirs and natural lakes are density stratified almost throughout the year. In a reservoir,
vertical density gradients may arise from variations in temperature, dissolved salt content and
suspended sediments. In practice, mostly the density stratification is because of the temperature
variation within the reservoir. The use of thermal stratification, which exists in tropical seas, as a
source of energy has raised the question of the degree of selectivity that exists during intake of
a vertical density gradient fluid. The reduction of reservoir sedimentation by the removal at the
dam of water containing large amounts of suspended sediment has been suggested as a means of
prolonging the useful life of major structures. A common feature of the applications described
is the fact that, in all cases, the fluids are miscible and the density differences are small. For the
purpose of selective withdrawing, various intake structures have been studied and used. These
structures may be broadly classified as fully or partially submerged (Sharp and Parchure 1991,
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368 F. Kocabaş et al.

1993). In the former, the intake structure is simply a circular pipe projecting vertically from the
bed, with or without a horizontal cap (Harleman et al. 1959). Fully submerged intakes are usually
less costly. In locations where the bed is soft, intakes set level with the bed may suck the sediment
into the cooling system. Therefore, a fully submerged intake is constructed at some distance
above the bed level. This raised intake can reduce the sediment intrusion but needs deeper water.
Sharp and Parchure (1991, 1993) have investigated the effect of the clearance, c (vertical distance
of the intake to the bed), on the critical submergence. Their studies were performed on simple
vertical intakes set flush with bed and raised above the bed level. They showed that the critical
submergence decreased as the intake was raised.

The maximum discharge (from the lower layer) without simultaneous withdrawal from the
upper layer is investigated. Investigations have been made to determine the critical value of
the withdrawal rate in terms of known quantities, such as distance from the interface (critical
submergence), diameter of the intake pipe and density (Davidia and Glover 1956).

If the gravitational acceleration is reduced by the factor �ρ/ρ, then it is designated by a prime,
g(�ρ/ρ) = g′. It follows that the Froude number remains as the primary similitude parameter
for the stratified flows. The results of the analysis of the earlier investigators can be generalised as

Sc

Di
= a · Frb (1)

where Sc is the critical submergence, Di the internal diameter of the intake pipe, a and b the
constants, Fr = Vi/

√
g′ · Di denotes densimetric Froude number, Vi the average intake velocity,

g′ = g(�ρ/ρ) denotes reduced gravitational acceleration, g the gravitational acceleration, �ρ =
ρ − ρ0 the difference in the density of the two fluids, ρ the density of the lower layer, and ρ0 the
density of the upper layer. For the case in which the lower fluid is a liquid and the upper fluid is
air �ρ ∼= ρ.

Yıldırım and Kocabaş (1995, 1998, 2002) and Yıldırım (2004) investigated the critical sub-
mergence for an air-entraining vortex at an intake. They show that the critical submergence for
an intake can be predicted by means of a potential flow solution. Theoretical results of these
investigators show that the critical submergence for an intake is equal to the radius of a critical
spherical sink surface (CSSS).

In this study, experiments on a circular intake sited in water and water–oil reservoirs are
conducted. When the fluids are at rest, the interface will be horizontal. A sharp interface is
desirable to determine the critical submergence in a stratified fluid medium. For this purpose,
oil (specific gravity is 0.91) was used to obtain the stratification in this study. CSSS is utilised
to determine the theoretical Sc/Di. Also, artificial neural network (ANN) model is developed to
estimate the value of Sc/Di for intakes in a stratified fluid medium. The experimental results are
compared with those of CSSS and ANN model.

2. Experiment

The experimental tests were carried out at the Hydraulics Laboratory of the Faculty of Engineering
and Architecture at Bozok University, Yozgat, Turkey.

2.1. Equipment and test program

Laboratory studies were conducted in an 80 × 80 × 50 cm3 rectangular prism tank. One side and
the bottom of the tank were made of 3.5 mm-thick steel plate. The other sides were made of 6 mm-
thick glass. The tank was elevated 1 m above the floor. A massive concrete cylindrical floor was
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Civil Engineering and Environmental Systems 369

Figure 1. Experimental set-up.

constructed at the centre bottom of the tank. Experiments were performed on a vertically flowing
downward intake pipe in a still-water reservoir. Steel intake pipe of internal diameter 27.5 mm
was used in the experiment. The intake was located in the centre of the concrete cylinder bottom
and connected to the pump which re-circulated the water. For uniform and silent distribution, the
returned water is sent through a plastic pipe-ring having lateral holes. This plastic pipe-ring is
embedded in a fine gravel packing placed within the circumferential gap between the massive
cylindrical floor and the inner wall of the tank as shown in Figure 1.

The discharge of the intake was measured by a calibrated venturimeter on the intake outlet
line. The intake pipe was changeable and connected to the outlet line with a threaded coupling.
The procedure for the experiment is as follows. After placing the intake, the tank is filled with
sufficient water. Stratification was then simulated using oil of thickness ti/Di = 0.73 or 1.82.
Here, t is the thickness of the oil layer. The pump is started and the valve on the pump line is
opened and the discharge is slowly increased to a desired value. When the conditions became
steady, a small amount of the valve on the drain pipe (Figure 1) was opened (i.e. submergence
was decreased). The experiment was continued until the upper layer fluid enters the intake. When
the air-entraining vortex or the upper layer fluid reaches the intake, the draining was stopped to
keep the water level constant and then the measurements were related to the intake discharge, Qi,
and critical submergence, Sc. This experiment was conducted for calculating clearances, when
c/Di = 0, 1, 2 and 3 (Ülker 2005, Kocabaş and Ülker 2006).

3. Methods of analysis

3.1. Analysis by CSSS

Theoretical results of Yıldırım and Kocabaş (1995, 1998, 2002) show that the critical submer-
gence for an intake is equal to the radius of a CSSS, where the critical velocity, Vs, is constant
for a given flow and geometry. The CSSS has the same centre and discharge as the intake. On
the basis of continuity and potential flow solution, Yıldırım and Kocabaş derived the following
formulas for the critical submergence during intakes:

for c ≤ Sc
Sc

Di
= −(c/Di) + √

(c/Di)2 + Vi/(2Vs)

2
(2)

and

for c > Sc
Sc

Di
= 0.25

(Vi/Vs)
1/2√

1 − (D0/Di)2(Vs/Vi)
(3)
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Figure 2. Effect of blockage on critical spherical sink surface.

where c is the clearance (vertical distance of the intake to bottom), Vs the critical radial velocity
at CSSS, and D0 the outer diameter of the intake pipe.

Vs is a constant for a given flow and its geometry can be determined by conducting a few exper-
iments. It can be computed from the continuity equation, Vs = Qi/Ac, where Ac is the net total
working surface area of the CSSS after subtracting the blockage of all the impervious boundaries
and intake pipes. Blockage means loss in the surface area of a complete CSSS. It is attributable to
impervious flow boundaries or structures through which no flow is supplied to the intake (Figure 2).

Yıldırım et al. (2000) show that the blockage of intake pipe is equal to the surface area of the
spherical sector (cap) of the CSSS remaining inside the outer boundaries of the intake pipe, where
no flow is supplied to the intake. The blockage of the intake pipe is present for c > Sc (Figure 2a)
and the net total working surface area of CSSS is equal to

Ac = 2πS2
c

⎛
⎝1 +

√
1 − 0.25

(
D0

Sc

)2
⎞
⎠ (4)

The blockage of the tank bottom is present for c ≤ Sc (Figures 2b and c), and the total net working
surface area of CSSS is equal to

Ac = 2πSc(Sc + c) (5)

Ac is calculated for each flow and geometry. If Qi is plotted against Ac, the critical radial velocity
at CSSS, Vs, should be equal to the slope of the linear line. The values of Qi, c/Di and ti/Di were
known for each experiment. Thus, for a given Qi, c/Di and ti/Di, the value of Ac can be computed
by using the measured value of Sc. In total, 88 experiments were performed, in which 64 were
used to determine the critical radial velocity, Vs. Figure 3 indicates that the relationship between
Qi and the area of CSSS, Ac, is linear as mentioned earlier. The value of Vs should be equal to
the slope of this linear line. Figure 3 shows the values of Vs for different c/Di and ti/Di. The
determined Vs for the given flow and geometry was used to calculate Sc/Di from Equations (2)
and (3) for CSSS by the results of 24 experiments. The observed and calculated values of Sc/Di

by CSSS are given in Table 2.

3.2. Neural networks

ANNs are based on the present understanding of the biological nervous system, though much
of the biological detail is neglected. ANNs are massively parallel systems composed of many
processing elements connected by links of variable weights. Of the many ANN paradigms, the
multi-layer back-propagation network is by far the most popular (Lippman 1987). The network
consists of layers of parallel processing elements, called neurons, with each layer being fully
connected to the preceding layer by interconnection strengths or weights, W . Figure 4 illustrates
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Figure 3. Determination of Vs values.

Figure 4. A three-layer neural network structure.

a three-layer neural network consisting of layers i, j and k, with the interconnection weights Wij

and Wjk between layers of neurons. Initial estimated weight values are progressively corrected
during a training process that compares predicted outputs to known outputs and back-propagates
any errors (from the right to left in Figure 4) to determine the appropriate weight adjustments
necessary to minimise the errors.

The Levenberg–Marquardt training algorithm was used here for adjusting the weights. The
adaptive learning rates were used for the purpose of faster training speed and solving local minima
problem. For each epoch, if performance decreases towards the goal, then the learning rate is
increased by the factor learning increment. If performance increases, the learning rate is adjusted
by the factor learning decrement. The number of hidden layer neurons was found using simple
trial-and-error method.

4. Application and results

A program code, including neural networks toolbox, was written in MATLAB language for the
ANN simulation. Different ANN architectures were tried using this code and the appropriate
model structure was determined.
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A difficult task withANN involves choosing parameters such as the number of hidden nodes, the
learning rate and the initial weights. Determining an appropriate architecture of a neural network
for a particular problem is an important issue, because the network topology directly affects its
computational complexity and its generalisation capability. The optimum network geometry is
obtained using a trial-and-error approach, in which ANNs are trained with one hidden layer. It
should be noted that one hidden layer could approximate any continuous function, provided that
sufficient connection weights are used (Hornik et al. 1989). Here, the hidden layer node number
of ANN model was determined after trying various network structures, as there is no theory yet to
tell how many hidden units are required to approximate any given function. In the training stage,
same initial weights were used for each ANN. The sigmoid activation function was used for the
hidden and output nodes.

The parameters considered in the study are the c/Di, Vi, ti/Di and Sc/Di. The parameters c/Di,
Vi and ti/Di are used as inputs to the ANN for the estimation of Sc/Di. Of the 88 experimental
data sets, 64 data are used to train the ANN and the remaining data are used for validation.
The remaining 24 data sets are randomly selected among the whole data. The model results are
evaluated using mean square errors (MSEs) and determination coefficient (R2) statistics.

Before applying the ANN to the data, the training input and output values were normalised
using the equation

a
xi − xmin

xmax − xmin
+ b (6)

where xmin and xmax denote the minimum and maximum of the data, respectively. Different values
can be assigned for the scaling factors, a and b. There are no fixed rules as to which standardisation
approach should be used in particular circumstances (Dawson and Wilby 1998). Herein, the values
of a and b were taken as 0.6 and 0.2, respectively.

Different ANN structures are tried in terms of iterations and hidden layer numbers. The test
MSE statistics of the ANN models are given in Table 1. As can be seen from this table, the ANN
(3, 7, 1) model comprising three inputs, seven hidden and one output layer neurons has the lowest
MSE (0.0136).

The observed and calculated values of Sc/Di by CSSS and ANN are given in Table 2. The
absolute relative errors for CSSS andANN model are also presented in Table 2. These are defined as

Relative error(%) =
∣∣∣∣ (Sc/Di)observed − (Sc/Di)calculated

(Sc/Di)observed

∣∣∣∣ × 100 (7)

As seen from this table, the ANN generally gives smaller relative errors than the CSSS. The ANN
has a mean absolute relative error of 2.04%, which is smaller than that of the CSSS (3.11%).

Table 1. The mean square error statistics obtained after different trials.

Iteration number

MSE 10 20 30 40 50 60 70 80 90 100

Number of hidden layer nodes
1 0.0777 0.0772 0.0765 0.0767 0.0767 0.0767 0.0767 0.0767 0.0767 0.0767
2 0.0455 0.0333 0.0332 0.0333 0.0337 0.0342 0.0346 0.0348 0.0346 0.0345
3 0.0606 0.0181 0.0167 0.0147 0.0146 0.0145 0.0144 0.0144 0.0144 0.0144
4 0.038 0.0337 0.0318 0.0281 0.027 0.0318 0.0342 0.0346 0.0348 0.0345
5 0.0172 0.0168 0.0168 0.0168 0.0168 0.0167 0.0167 0.0168 0.0168 0.0169
6 0.0203 0.0201 0.0262 0.0255 0.0262 0.0256 0.0309 0.0312 0.0311 0.0311
7 0.026 0.0136 0.0151 0.0185 0.0219 0.036 0.0376 0.0383 0.0418 0.0458
8 0.0222 0.0248 0.0543 0.0611 0.0704 0.0828 0.0842 0.091 0.0998 0.1005
9 0.0433 0.0506 0.0553 0.0568 0.0582 0.0596 0.0609 0.0725 0.0876 0.1305

10 0.0277 0.0385 0.044 0.0556 0.1185 0.1233 0.0595 0.0704 0.0686 0.0697
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Table 2. Test results and calculated Sc/Di by critical spherical sink surface and artificial neural network.

Sc/Di
Number of Absolute relative Relative error %
test c/Di ti/Di Vi (m/s) Observed CSSS ANN error % CSSS ANN

1 0 0 2.05 5.29 5.30 5.22 0.14 1.40
2 0 0 1.29 4.27 4.20 4.14 1.63 3.10
3 0 0.73 2.05 6.24 6.08 6.11 2.51 2.00
4 0 0.73 1.29 5.11 4.82 5.10 5.60 0.19
5 0 1.82 2.05 6.49 6.38 6.38 1.75 1.68
6 0 1.82 1.29 5.18 5.06 5.36 2.37 3.40
7 1 0 2.05 4.56 4.57 4.76 0.17 4.24
8 1 0 1.53 3.95 3.89 4.04 1.45 2.40
9 1 0.73 2.05 5.42 5.59 5.55 3.18 2.40

10 1 0.73 1.53 4.95 4.77 4.96 3.60 0.35
11 1 1.82 2.05 5.67 5.76 5.77 1.56 1.76
12 1 1.82 1.53 4.95 4.92 5.05 0.69 2.13
13 2 0 2.05 4.09 4.10 4.17 0.31 2.05
14 2 0 1.80 3.73 3.80 3.83 1.82 2.77
15 2 0.73 2.28 5.42 5.33 5.15 1.66 4.86
16 2 0.73 1.29 4.00 3.81 4.00 4.86 0.12
17 2 1.82 2.28 5.51 5.58 5.43 1.29 1.40
18 2 1.82 1.51 4.71 4.39 4.56 6.85 3.15
19 3 0 2.28 4.33 3.69 4.18 14.62 3.30
20 3 0 2.05 3.89 3.45 3.83 11.37 1.54
21 3 0.73 2.05 4.40 4.55 4.42 3.46 0.55
22 3 0.73 1.80 4.22 4.20 4.07 0.55 3.40
23 3 1.82 2.05 4.58 4.71 4.60 2.85 0.50
24 3 1.82 1.80 4.36 4.34 4.35 0.43 0.21

Figure 5. Plot of observed and estimated Sc/Di by (a) artificial neural network and (b) critical spherical sink surface.
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The ANN estimates are compared with those of the CSSS in Figure 5 in the form of hydrograph
and scatter plots. As can be seen from the hydrographs, the ANN estimates catch the observed
values with a high accuracy. The fit line equation coefficients of the ANN model, 0.969 and 0.138,
are closer to 1 and 0, respectively, with a higher R2 value of 0.974 than those of the CSSS.

5. Conclusions

ANN models and CSSS formulas, which are found by theoretical analysis, were used for the
analysis of experimental results in the present study. The optimum ANN models were obtained
after trying different structures in terms of iterations and hidden layer numbers. The estimates of
the selected ANN models were compared with the CSSS and experimental results. Based on the
comparison results, the ANN was found to perform better than the CSSS model in the prediction
of critical submergence for an intake in a stratified fluid medium. The experimental results cannot
be used for prototype design purposes, because of the fact that the model is very small.

Nomenclature

Ac total net working surface area of CSSS

c clearance (vertical distance of intake to the bottom of tank)

Di internal diameter of intake pipe

D0 outer diameter of intake pipe

Fr densimetric Froude number = Vi/(g
′ · Di)

0.5

g gravitational acceleration

Qi intake discharge

Sc critical submergence (critical value of S)

t depth of the upper layer

Vi average intake velocity

Vs critical radial velocity at CSSS

g′ = g
�ρ
ρ

reduced gravitational acceleration

ρ density of the lower layer

ρ0 density of the upper layer

�ρ = ρ − ρ0 difference in density of the two fluids
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Ülker, Ş., 2005. Factors affecting the critical submergence for selective withdrawal in a stratified fluid media. MS Thesis

[in Turkish]. Erciyes University, Kayseri, Turkey.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
Ü
B
T
A
K
 
E
K
U
A
L
]
 
A
t
:
 
1
0
:
1
1
 
1
0
 
N
o
v
e
m
b
e
r
 
2
0
0
9



Civil Engineering and Environmental Systems 375

Yıldırım, N., 2004. Critical submergence for a rectangular intake. ASCE Journal of Engineering Mechanics, 130 (10),
1195–1210.
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