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Abstract

First, a numerical algorithm for the friction factor in the Darcy–Weisbach pipe friction head loss formula is developed by an effective

linear iteration scheme of the Colebrook–White equation, which precisely determines, with a small load of computations, the friction factor

within the ranges of: 0!relative roughness!0.1 and 2!103!Reynolds number!109. The developed subroutine can be adapted to any pipe

friction loss parts of any pipe network problems. Next, the branching pipes problem is formulated as a system of non-linear equations, and an

efficient, practical, and always convergent numerical algortihm for its solution is developed, in which the Darcy–Weisbach equation is used

for the friction losses, the friction factor being computed by the above-mentioned algorithm. The model can handle many reservoirs which

are interconnected by pipes branching from a common junction in just a couple of seconds of execution time.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The Darcy–Weisbach equation for the friction loss in

pipes yields better precision than other equations such as

Hazen–Williams because the friction factor it involves is

determined as a function of both the relative pipe wall

roughness (eZk/D) and the Reynolds number (Re). The

others, like Hazen–Williams, Manning, and Scobey assume

that the flow is in the rough pipe zone and neglect the effect

of Re. Comments like: “Each of them is applicable only to

problems involving flow of water at normal temperatures

and at a relatively high degree of turbulence, as well as to

ordinary commercial pipes.”, which appears on page 73, and

like: “They are based on data obtained at fairly high

Reynolds numbers, with therefore a high degree of

turbulence.” appearing on page 77 of the classical book

by Morris and Wiggert [4], can be found in many relevant

sources. Formerly, the friction factor (l) in the Darcy–

Weisbach equation was obtained graphically from the

Moody diagram, which contains so many lines for so
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many combinations of relative roughness (e) and Re. This

manual procedure is time-consuming and may not be

precise. The Colebrook–White formula [1] can be used as a

replacement for the entire Moody diagram, as it very closely

simulates all the curves of the Moody diagram almost

exactly. However, it is a formula in open form which does

not lend itself for easy computation of l. Hence, one of the

objectives herein has been to devise a practical algorithm for

the correct l as a function of both e and Re.

The branching pipes problem comprises three or more

number of reservoirs interconnected by pipes branching from

a common junction point for which a trial-and-error solution

is advocated in all the conventional hydraulics textbooks

[1,3,5,6]. Streeter et al. advocate using an optimizer on a

spreadsheet in order to perform these trial-and-error

computations more conveniently [5]. Hence, formulation

of the branching pipes problem in a more sophisticated

manner eliminating any trial-and-error computations with no

user interference has been another objective of this study.
2. Determination of the Darcy–Weisbach friction factor

The Darcy–Weisbach equation is considered to calculate

the head loss due to friction through a pipe more realistically
Advances in Engineering Software 35 (2004) 773–779
www.elsevier.com/locate/advengsoft

http://www.elsevier.com/locate/advengsoft


Nomenclature

ci discharge coefficient, which is C1 for the

discharging and K1 for the filling reservoirs

Cei coefficient of energy loss of exit from the ith

reservoir

SCli summation of minor loss coefficients over the ith

pipe such as bends and valves

Di diameter of the ith pipe (m)

DH increment of value for the hydraulic head at the

junction computed at the end of one cycle of

Newton–Raphson iterative algorithm (m)

DVi increment of velocity in the ith pipe computed at

the end of one cycle of Newton–Raphson

iterative algorithm (m/s)

e relative roughness of any pipe

l Moody pipe friction factor

g acceleration of gravity (m/s2)

H hydraulic head at the junction (m), and

J junction point at which all the branching pipes

meet

k height of nominal roughness of interior of pipe

wall (m)

Li length of the ith pipe (m)

Qi low rate through the ith pipe (m3/s)

Re Reynold’s number

snC1 symbol used for the left hand side of Eq. (10)

computed with the latest values of Vi’s and

inserted in Eq. (15) as the last element of the

load vector

ti symbol used for the left hand side of Eq. (3) for

the ith pipe

t 0ii first partial derivative of ti with respect to the ith

variable

ui symbol used for the left hand side of Eq. (4) for

the ith pipe

u 0
jj first partial derivative of ui with respect to the ith

variable

Vi0
velocity in the ith pipe computed for the

hypothetical case of hydraulic head at the

junction equalling water surface elevation of

the jth reservoir (m/s)

Vi1
initial estimate for the velocity in the ith pipe

Vi2
next value for the velocity in the ith pipe

computed at the end of one cycle of Newton–

Raphson iterative algorithm (m/s)

Zi water surface elevation of the ith reservoir (m)

n kinematic viscosity of water flowing in the pipe

(m2/s)
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because it takes into account the smooth pipe, transition

flow, and rough pipe flow cases. Determination of its pipe

friction factor, l, as a function of both the relative

roughness, e and Reynolds number, Re, out of the well-

known Moody diagram, which has been developed as the

outcome of long and tedious accumulation of prototype

experiments, provides this precision. As an alternative to so

many curves of the Moody diagram, the Colebrook–White

formula has been proposed [2], which is presented in many

relevant publications like Brater and King [1], also, as:

lK0:5 C2 log10fe=3:7 C ð2:51=ReÞlK0:5g Z 0 (1)

where,
l
 Darcy–Weisbach pipe friction factor,
e
 relative roughnessZnominal roughness height (mm)/

inner pipe diameter (mm), k/D,
Re
 Reynold’s number of the flow conveyed in the pipeZ
VD/n, and
n
 kinematic viscosity of water flowing in the pipe (m2/s)
Computation of l for given e and Re with the help of

Colebrook–White equation requires an iterative method. In

this study, Newton–Raphson, secant, and linear iteration

methods of numerical root-finding have been applied on that

equation, and it has been realized that in this case the linear

iteration method is suprior to the other two, although they

are more commonly known and more popular in general.
Both the Newton–Raphson and secant algorithms for this

problem necessitate an initial estimate for l which must be

smaller than the corrrect value. Otherwise, for some

combinations of e and Re, after a few steps the iterations

stop with the comment: “Attempt of taking square-root of

negative argument”.

Colebrook–White formula can be manipulated as:

l Z fK1:15=ln½e=3:7 C ð2:51=ReÞlK0:5�g2 (2)

When the iterations are heading towards the root of an

equation by any recursive method, the sequential differ-

ences between the consecutive pairs of iterations must

approach zero. In other words, for convergence, it is

obvious that jxiKxiK1j must be smaller than j(xiK1KxiK2)j.

It is a known fact that there is a straightforward analytical

relationship between the last three iterations by the linear

iteration method, which is:

xi KxiK1 Z ðxiK1 KxiK2Þjg
0ðxÞj (3)

By this equation, in order for jxiKxiK1j to be smaller than

j(xiK1KxiK2)j, the term: jg 0(x)jmust be smaller than one. It is

also obvious by Eq. (3) that closer the magnitude of the term:

jg 0(x)j to zero, greater the difference between jxiKxiK1j and

j(xiK1KxiK2)j, which means faster the rate of convergence.
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In our case, g 0(x) is:

g0ðxÞ Z ½ð1:3255Þð2:51=ReÞlK1:5�=ffln½e=3:7

C ð2:51=ReÞlK0:5�g3½e=3:7 C ð2:51=ReÞlK0:5�g (4)

which assumes values always very close to zero for any l in

the possible range of: 0.002!l!0.1, with any combi-

nations of e and Re values. The numerical values of jg 0(x)j

are always smaller than 0.1 and mostly even smaller than

0.01, which can be verified using Eq. (4) by anyone

interested. Therefore the rate of convergence of the linear

iteration method by Eq. (2) is very fast, and it is almost the

same as and even a little faster than those of Newton–

Raphson and secant methods. The total amount of the

arithmetic operations for each iteration of the linear

iteration method is also less than that by either the

Newton–Raphson or the secant method. Generally, l is

within 0.01!l!0.03, and therefore, starting out the

iterations with the initial value of: l1Z0.02, and inserting

this in the right hand side of Eq. (2), the iterations of: l2Z
g(l1) and new l1Zprevious l2 yields the correct l in just a

few cycles even for extreme l values.
3. Branching pipes problem

Fig. 1 depicts the problem of branching pipes inter-

connecting n number of reservoirs, which are represented by

integer numbers, the 1st reservoir being the highest and the

nth one the lowest, and the ith pipe connecting the junction,

J, to the ith reservoir. Flow in the 1st pipe is from the 1st

reservoir towards J because the water surface elevation

of the uppermost reservoir is the highest. Similarly,

the direction of flow in the nth pipe is always towards
Fig. 1. Branching pipes probem.
the nth, the lowermost reservoir. Flow in any intermediate

pipe may be either to or from the reservoir to which it is

connected. Velocities and directions of flows in all the pipes

need to be determined. The hydraulic head at the junction is

another unknown. Application of the Bernoulli equation

between the water surface elevations of the reservoirs and

the junction produces n number of energy equations. The

continuity equation at the junction constitutes the nC1

independent equation.

The energy equations between the water surface

elevation of a discharging reservoir and the junction, and

between the junction and the water surface elevation of a

filling reservoir over the connecting pipes are:

Zi KCei

V2
i

2g
K

X
Cli

V2
i

2g
Kli

Li

Di

V2
i

2g
Z H (5)

and

H K
X

Cli

V2
i

2g
Kli

Li

Di

V2
i

2g
K

V2
i

2g
Z Zi (6)

respectively. In these equations,
Zi
 water surface elevation of the ith reservoir (m),
Cei
 coefficient of energy loss of exit from the ith reservoir,
SCli
 summation of minor loss coefficients over the ith pipe

such as bends and valves,
li
 pipe friction factor of the ith pipe in the Darcy–

Weisbach friction loss formula,
Li
 length of the ith pipe (m),
Di
 diameter of the ith pipe (m),
Vi
 average flow velocity in the ith pipe (m/s),
H
 hydraulic head at the junction (m), and
g
 acceleration of gravity (m/s2).
Eqs. (5) and (6) can be rewritten as:

V2
i

2g
Cei C

X
Cli Cli

Li

Di

� �
CH KZi Z 0 (7)

and

V2
i

2g

X
Cli Cli

Li

Di

C1

� �
KH CZi Z 0 (8)

For the 1st reservoir Eq. (7) is valid, and for the nth

reservoir Eq. (8) applies. Either equation is valid for the

intermediate reservoirs.

The continuity equation at the junction is:

Q1 C
XnK1

iZ2

ciQi KQn Z 0 (9)

where,
Qi
 flow rate through the ith pipe (m3/s), and
ci
 discharge coefficient, which is C1 for the discharging

reservoirs, and K1 for the filling reservoirs.
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If all the pipes are circular, Eq. (9) can be rewritten as:

V1D2
1 C

XnK1

iZ2

ciViD
2
i KVnD2

n Z 0 (10)

Those reservoirs whose water surface levels are higher

than hydraulic head of the junction, H, are discharging, and

those whose water surface levels are lower than H are

filling. Symbolically, if jK1 is the number of the lowest

discharging reservoir, as the others from the jth down to the

nth are filling, then the below inequality holds:

Zj !H!ZjK1 (11)

Denoting the left hand sides of Eqs. (7) and (8) by t and u,

respectively, the branching pipes problem for which

inequality 11 holds can be depicted as a system of nC1

number of nonlinear equations as:

t1 Z 0

«

tjK1 Z 0

uj Z 0

ujC1 Z 0

«

un Z 0

D2
1V1 C/CD2

jK1VjK1 KD2
j Vj K/KD2

nVn Z 0

(12)

where, the velocities and hydraulic head of the junction

become nC1 number of unknowns.
3.1. Determination of discharging and filling reservoirs

A loop of computations is executed to determine

the discharging and filling reservoirs. Firstly j is assumed

to equal 2, which implies that the rest of the nK2 number of

lower reservoirs except for the uppermost one are filling.

Then, the velocity in the pipe of a discharging reservoir is

computed directly by the following equation:

Vi Z 2gðZi KHÞ= Cei C
X

Cli CliLi=Di

� �h i0:5

(13)

And, the velocity in the pipe of a filling reservoir is

computed directly by the following equation:

Vi Z 2gðH KZiÞ=
X

Cli CliLi=Di C1
� �h i0:5

(14)

In Eqs. (11) and (12), H is set equal to the water surface

elevation of the jth reservoir. The discharges in the pipes are

computed by multiplying the velocity with the cross-

sectional area. If the left hand side of Eq. (9) is positive,

then the jth reservoir and the lower ones are filling reservoirs

while the jK1 and higher ones are the discharging reservoirs.

Conversely, if the left hand side of Eq. (9) becomes negative,

the discharging flow rates are smaller than the filling flow
rates and hence the actual H must be lower than the water

surface elevation of the jth reservoir. By lowering H, the flow

rates in the discharging pipes will increase while some filling

pipes will become discharging pipes and the flow rates of the

lower filling pipes will decrease so that the sum of

discharging flow rates approach the sum of filling flow

rates. Therefore, j is increased by one, meaning the head H, is

assumed to equal the water surface elevation of the next

lower intermediate reservoir. The velocities in the pipes are

computed again with the help of Eqs. (13) and (14) with the

new H, and the sign of Eq. (9) is evaluated anew. This loop

continues until the value of Eq. (9) turns negative.
3.2. Solution of the system of nonlinear equations

Once the position of the actual H is determined, solution

of the system of Eq. (12) is performed by the Newton–

Raphson method, which is summarized in the following.

Written in matrix form, the system of linear equations to

be solved for the increments of DVi and DH is:

t011 0 0 . . 0 0 . 0 0 C1

0 t022 0 . . 0 0 . 0 0 C1

« « « « « «

0 0 0 . t0jK1;jK1 0 0 . 0 0 C1

0 0 0 . 0 u0
jj 0 . 0 0 K1

« « « « « «

0 0 0 . . . . . 0 u0
nn K1

D2
1 D2

2 .. D2
jK1 KD2

j KD2
jC1 ..KD2

n 0

2
666666666666666664

3
777777777777777775

DV1

DV2

«

DVjK1

DVj

«

DVn

DH

2
6666666666666664

3
7777777777777775

Z

Kt1

Kt2

«

KtjK1

Kuj

«

Kun

Ks

2
66666666666664

3
77777777777775

(15)
where,
snC1
 magnitude of the left hand side of Eq. (10) computed

with the latest values of the Vi’s,
t 0ii
 partial derivatives of ti with respect to Vi, and
u 0
jj
 partial derivatives of uj with respect to Vj.
Next, the improved values for the unknowns are

computed by:

Vi2
Z Vi1

CDVi (16a)

H2 Z H1 CDi (16b)
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Denoting the velocities computed by Eqs. (13) and (14)

with the correct j as Vi0
; the actual velocities in the

discharging pipes will be a little smaller than Vi0
’s while

those in the filling pipes will be a little greater than Vi0
’s.

Therefore, the initial velocity estimates in the discharging

pipes are taken arbitrarily as:

Vi1
Z 0:8Vi0

(17)

And, the initial velocity estimates in the filling pipes are

taken as:

Vi1
Z 1:2Vi0

(18)

The initial estimate for the velocity in the pipe which is

connected to the jth reservoir is arbitrarily taken as 1.0 m/s.

Finally, the initial estimate for the nC1 unknown, H, is

computed by:

H1 Z Zj C0:2ðZjK1 KZjÞ (19)

The partial derivatives of any ti or ui with respect to

V1,V2,.,Vn, H are zero except for the ith independent

variable. The ith partial derivatives of ti and ui with respect

to Vi are given below:

t 0ii Z Vi Cei C
X

Cli CliLi=Di

� �
=g (20)

u0
ii Z Vi

X
Cli CliLi=Di C1

� �
=g (21)

After having assigned the initial estimates to the n

velocities and to H, the system of nC1 number of linear

equations given as Eq. (15) is solved for the increments,

DVi’s and DH. Next, nC1 number of relative differences are

computed as shown below:

RDi Z jDVi=Vi2
j for i Z 1;.; n

RDnC1 Z jDH=H2j

If all these relative differencesare less than orequal to10–6,

then the increments are small enough, meaning the conver-

gence is achieved and the solution of the unknown vector is

obtained to six significant digit precision. If any of the relative

differences are not small enough, then the assignments:

Vi1
ZVi2

,H1ZH2aremade,andthesystemoflinearequations

defined as Eq. (15) are computed with these new values. The

iterations continue until Vi2
zVi1

and H2zH1 within six digit

precision.
4. Example problems

The problem given on pages: 556–557 of the book by

Streeter et al. [5] is solved using the method described

above. The input data and the solution are given in

Appendix I. Another example consisting of nine reservoirs

is given in Appendix II, in which the roughness heights,
lengths, and diameters of the branching pipes are purposely

chosen to be extreme values. Still, the developed rouitne

converges in six loops.
5. Conclusions

The Colebrook–White equation is solved for the Darcy–

Weisbach pipe friction factor by an efficient linear

iteration algorithm, which can be adopted for friction

loss part of any problem involving pipes. Separately, a

numerical model is developed for the branching pipes

problem, which eliminates a trial-and-error approach,

capable of handling even 100 branching pipes in just a

few seconds, in which the pipe friction losses are

computed by Darcy–Weisbach equation whose pipe

friction factor is computed by the algorithm developed in

the first part of the study.

The energy equations considered for the branching pipes

problem, Eqs. (7) and (8), take into account all the minor

losses such as exit from a discharging reservoir, pipe bends,

valves, and entrance to a filling reservoir also along with the

pipe friction losses. Modelling of a branching pipe

configuration consisting of any number of interconnected

reservoirs by the system of the non-linear equations as

summarized by Eq. (12), and solution of this system with a

high numerical precision automatically in the systematic way

depicted, with correct quantification of even the minor losses

along with the friction losses, are the improvements to the

classical trial-and-error approach advocated in all the

relevant sources so far.
Appendix A

Example problem about three branching pipes given on

page: 556 in the book by Streeter et al. [5]

Water surface elevations of the reservoirs:
Water surface elevation of reservoir no. 1Z30.00 m
Water surface elevation of reservoir no. 2Z18.00 m
Water surface elevation of reservoir no. 3Z9.00 m

Length, diameter, and roughness height of the pipes:
L(1)Z3000 m, D(1)Z100 cm, k(1)Z0.20 mm
L(2)Z600 m, D(2)Z45 cm, k(2)Z0.90 mm
L(3)Z1000 m, D(3)Z60 cm, k(3)Z0.60 mm

Entrance loss coefficients of exit from reservoirs into the

pipes:
Ce(1)Z0.00, Ce(2)Z0.00

Total minor loss coefficients in the pipes are:
Cl(1)Z0.00, Cl(2)Z0.00, Cl(3)Z0.00,
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Kinematic viscosity of water, nZ1.00!10K06 (m2/s)

V’s and Q’s in the upper pipes assuming HZZ(2)
V0(1)Z2.31 m/s, Q0(1)Z1.816 m3/s
V0(2)Z0.00 m/s, Q0(2)Z0.000 m3/s

V’s and Q’s in the lower pipes assuming HZZ(2)
V0(3)Z2.27 m/s, Q0(3)Z0.642 m3/s

Summation of Q’s in the upper pipesZ1.82

Summation of Q’s in the lower pipesZ0.64

H actual is between water surface elevations of

reservoirs: 1 and 2
18.00!H!30.00

Iterations for the system of four nonlinear equations:

Vi1
Vi2

li

1.84952 1.63026 0.01418

1.00000 2.74922 0.02000

2.72515 2.98206 0.01986

HJ1
HJ2

20.40000 24.34336

«
1.50924 1.50924 0.01439

2.05404 2.05404 0.02362

3.03694 3.03694 0.01981

24.98791 24.98791
The solution is reached in six loops yielding the

following result:

Hydraulic head at the junction point: HZ24.99 m

Flow rates incoming to the junction:
Q(1)Z1.1854 m3/s, V(1)Z1.509 m/s

Flow rates outgoing from the junction:
Q(2)Z0.3267 m3/s, V(2)Z2.054 m/s
Q(3)Z0.8587 m3/s, V(3)Z3.037 m/s

Appendix B

Example problem about nine branching pipes for the

purpose of demonstration

Water surface elevations of the reservoirs:
WSE of reservoir no. 1Z109.00 m
WSE of reservoir no. 2Z99.00 m
WSE of reservoir no. 3Z88.00 m
WSE of reservoir no. 4Z77.00 m
WSE of reservoir no. 5Z66.00 m
WSE of reservoir no. 6Z55.00 m
WSE of reservoir no. 7Z44.00 m
WSE of reservoir no. 8Z33.00 m
WSE of reservoir no. 9Z22.00 m
Length, diameter, and roughness height of the pipes:
L(1)Z1570 m, D(1)Z40 cm, k(1)Z5.80 mm
L(2)Z1050 m, D(2)Z30 cm, k(2)Z0.00 mm
L(3)Z800 m, D(3)Z25 cm, k(3)Z0.15 mm
L(4)Z1400 m, D(4)Z45 cm, k(4)Z0.00 mm
L(5)Z700 m, D(5)Z40 cm, k(5)Z0.20 mm
L(6)Z450 m, D(6)Z30 cm, k(6)Z0.10 mm
L(7)Z2500 m, D(7)Z25 cm, k(7)Z0.75 mm
L(8)Z600 m, D(8)Z45 cm, k(8)Z2.50 mm
L(9)Z1700 m, D(9)Z40 cm, k(9)Z0.00 mm

Loss coefficients of exit from reservoirs into the

pipes:
Ce(1)Z0.50, Ce(2)Z0.50, Ce(3)Z0.50, Ce(4)Z0.50,

Ce(5)Z0.60, Ce(6)Z0.70,
Ce(7)Z0.80, Ce(8)Z0.30

Total minor loss coefficients in the pipes are:
Cl(1)Z1.50, Cl(2)Z2.50, Cl(3)Z3.20, Cl(4)Z2.30,

Cl(5)Z0.00, Cl(6)Z1.20,
Cl(7)Z1.50, Cl(8)Z1.60, Cl(9)Z2.30

Kinematic viscosity of water, nZ10K6 (m2/s)

V’s and Q’s in the upper pipes assuming HJZZ(2)
V0(1)Z1.07 m/s, Q0(1)Z0.134 m3/s
V0(2)Z0.00 m/s, Q0(2)Z0.000 m3/s

V’s and Q’s in the lower pipes assuming HJZZ(2)
V0(3)Z1.88 m/s, Q0(3)Z0.092 m3/s
V0(4)Z3.30 m/s, Q0(4)Z0.526 m3/s
V0(5)Z4.56 m/s, Q0(5)Z0.573 m3/s
V0(6)Z5.75 m/s, Q0(6)Z0.406 m3/s
V0(7)Z2.02 m/s, Q0(7)Z0.099 m3/s
V0(8)Z5.39 m/s, Q0(8)Z0.858 m3/s
V0(9)Z5.35 m/s, Q0(9)Z0.672 m3/s

Summation of Q’s in the upper pipesZ0.13

Summation of Q’s in the lower pipesZ3.23

V’s and Q’s in the upper pipes assuming HJZZ(3)
V0(1)Z1.55 m/s, Q0(1)Z0.195 m3/s
V0(2)Z2.22 m/s, Q0(2)Z0.157 m3/s
V0(3)Z0.00 m/s, Q0(3)Z0.000 m3/s

V’s and Q’s in the lower pipes assuming HJZZ(3)
V0(4)Z2.34 m/s, Q0(4)Z0.372 m3/s
V0(5)Z3.72 m/s, Q0(5)Z0.468 m3/s
V0(6)Z4.98 m/s, Q0(6)Z0.352 m3/s
V0(7)Z1.80 m/s, Q0(7)Z0.089 m3/s
V0(8)Z4.92 m/s, Q0(8)Z0.783 m3/s
V0(9)Z4.95 m/s, Q0(9)Z0.622 m3/s
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Summation of Q’s in the upper pipesZ0.35

Summation of Q’s in the lower pipesZ2.69

V’s and Q’s in the upper pipes assuming HJZZ(4)
V0(1)Z1.91 m/s, Q0(1)Z0.240 m3/s
V0(2)Z3.14 m/s, Q0(2)Z0.222 m3/s
V0(3)Z1.88 m/s, Q0(3)Z0.092 m3/s
V0(4)Z0.00 m/s, Q0(4)Z0.000 m3/s

V’s and Q’s in the lower pipes assuming HJZZ(4)
V0(5)Z2.63 m/s, Q0(5)Z0.331 m3/s
V0(6)Z4.06 m/s, Q0(6)Z0.287 m3/s
V0(7)Z1.56 m/s, Q0(7)Z0.077 m3/s
V0(8)Z4.40 m/s, Q0(8)Z0.700 m3/s
V0(9)Z4.52 m/s, Q0(9)Z0.568 m3/s

Summation of Q’s in the upper pipesZ0.55

Summation of Q’s in the lower pipesZ1.96

V’s and Q’s in the upper pipes assuming HJZZ(5)
V0(1)Z2.22 m/s, Q0(1)Z0.279 m3/s
V0(2)Z3.85 m/s, Q0(2)Z0.272 m3/s
V0(3)Z2.66 m/s, Q0(3)Z0.131 m3/s
V0(4)Z2.35 m/s, Q0(4)Z0.374 m3/s
V0(5)Z0.00 m/s, Q0(5)Z0.000 m3/s

V’s and Q’s in the lower pipes assuming HJZZ(5)
V0(6)Z2.87 m/s, Q0(6)Z0.203 m3/s
V0(7)Z1.27 m/s, Q0(7)Z0.063 m3/s
V0(8)Z3.81 m/s, Q0(8)Z0.606 m3/s
V0(9)Z4.04 m/s, Q0(9)Z0.508 m3/s

Summation of Q’s in the upper pipesZ1.06

Summation of Q’s in the lower pipesZ1.38

V’s and Q’s in the upper pipes assuming HJZZ(6)
V0(1)Z2.48 m/s, Q0(1)Z0.312 m3/s
V0(2)Z4.44 m/s, Q0(2)Z0.314 m3/s
V0(3)Z3.26 m/s, Q0(3)Z0.160 m3/s
V0(4)Z3.33 m/s, Q0(4)Z0.529 m3/s
V0(5)Z2.65 m/s, Q0(5)Z0.333 m3/s
V0(6)Z0.00 m/s, Q0(6)Z0.000 m3/s

V’s and Q’s in the lower pipes assuming HJZZ(6)
V0(7)Z0.90 m/s, Q0(7)Z0.044 m3/s
V0(8)Z3.11 m/s, Q0(8)Z0.495 m3/s
V0(9)Z3.50 m/s, Q0(9)Z0.440 m3/s

Summation of Q’s in the upper pipesZ1.65

Summation of Q’s in the lower pipesZ0.98

HJ actual is between WSE’s of reservoirs: 5 and 6
55.00!HJ!66.00
Iterations for the system of 10 nonlinear equations:

Vi1
Vi2

li

1.98795 2.31646 0.04320

3.55336 4.15196 0.01109

2.61022 2.84121 0.01794

2.66046 2.73712 0.01088

2.12072 1.51026 0.01718

1.00000 2.94266 0.02000

1.08183 1.17920 0.02677

3.73591 3.63927 0.03142

4.20249 4.01438 0.01100

HJ1
HJ2

57.20000 63.01770

«
2.29396 2.29396 0.04321

4.08406 4.08406 0.01125

2.82837 2.82837 0.01802

2.69586 2.69586 0.01127

1.37508 1.37508 0.01758

2.43184 2.43184 0.01618

1.17691 1.17691 0.02663

3.63601 3.63601 0.03142

4.05365 4.05365 0.01074

62.97673 62.97672
The solution is reached in six loops:

Hydraulic head at the junction point: HJZ62.98 m

Flow rates incoming to the junction:
Q(1)Z0.2883 m3/s, V(1)Z2.294 m/s
Q(2)Z0.2887 m3/s, V(2)Z4.084 m/s
Q(3)Z0.1388 m3/s, V(3)Z2.828 m/s
Q(4)Z0.4288 m3/s, V(4)Z2.696 m/s
Q(5)Z0.1728 m3/s, V(5)Z1.375 m/s

Flow rates outgoing from the junction:
Q(6)Z0.1719 m3/s, V(6)Z2.432 m/s
Q(7)Z0.0578 m3/s, V(7)Z1.177 m/s
Q(8)Z0.5783 m3/s, V(8)Z3.636 m/s
Q(9)Z0.5094 m3/s, V(9)Z4.054 m/s
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