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Abstract The applicability of artificial neural networks (ANNs) and the adaptive neuro-fuzzy
inference system (ANFIS) for determination of mean velocity and discharge of natural streams is
investigated. The 2,184 field data obtained from four different sites on the Sarimsakli and Sosun
streams in central Turkey were used in the study. ANNs and ANFIS models use the inputs, water
surface velocity and water surface slope, to estimate the mean velocity and discharges of natural
streams. The accuracies of both models were compared with the multiple-linear regression
(MLR) model. The comparison results showed that the ANFIS model performed better than
the ANNs and regression models for estimating mean velocity and discharge. The ANN model
also showed better accuracy than the MLR model. The root mean square errors (RMSE) and
mean absolute relative errors (MARE) of theMLRmodel were reduced by 88 and 91% using the
ANFIS model in estimating discharges, respectively. It is found that the optimal ANFIS model
with RMSE of 0,063, MARE of 3,47 and determination coefficient (R2) of 0,996 in the test
period is superior in estimation of discharge than the MLR model with RMSE of 0,532, MARE
of 38,9 and R2 of 0,776, respectively. The study reveals that the ANFIS technique can be
successfully used for estimating the mean velocity and discharge of natural streams by using
only the inputs of water surface velocity and water surface slope.

Keywords Natural streams .Mean velocity . Discharge . ANNs . ANFIS . Linear regression

1 Introduction

Stream flows have many properties such as discharge, mean and maximum velocity, energy
loss, shear stress distributions, turbidity and sediment discharge. Determination of mean
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velocity and discharge over the open channel cross-section is very important with respect to
water management, water supply, allocation of irrigation water, flood control projects, and the
production of hydroelectric energy. The purpose for the investigation of flow properties such
as shear stress, mean velocity and discharge is to reduce the risk in a decision taken at any
given point of interest. Also, the development and application of an efficient water resource
management usually require the analysis of flow properties data.

Although many researchers have studied hydraulics in stream flow, there are still many
complex problems in the determination of flow properties. The simplifying of cross-section
averaged one dimensional hydraulics equations is usually utilized to describe flows in open
channels and rivers. However, generalization of these methods for all open channels which
have different hydraulic conditions and geometric shape is difficult. Flow measurement
methods are not very effective and extremely sensitive to roughness parameters.
Measurement of velocity samples requires considerable effort and time (Ardiclioglu et al. 2012).

The velocity-area method is one of the most commonly used methods which can be used in
discharge measurement. However, its utilization requires the mean slice velocity and also the
cross-sectional area for measured cross-sections. Application of the velocity-area method is
difficult and almost impossible to perform because of the significant floods events. Chezy,
Darcy–Weisbach and Manning’s equations, which are called slope-area methods, have been
developed to determine discharge. These empirical equations are not very effective, are all
extremely sensitive to roughness parameters and are not easy to determine (Chow 1959).

Prediction of flow properties such as discharge and mean velocity is very important when
measurements are unavailable or insufficient (Pulido-Calvo and Portela 2007). For this
purpose, many models have been used to forecast the properties of stream flow within recent
years. Many researchers have used data-based models such as stochastic models to solve these
problems. Data-based models have been improved for the forecasting of discharge of stream
flow in the past decades (Marques et al. 2006). Autoregressive (AR) and autoregressive
moving average (ARMA) have played an important role in river flow estimation (Salas
et al. 1985; Maria et al. 2004). Artificial neural networks (ANNs) models can be used for
solving such problems in river hydrodynamics. ANNs are a current model that have been
successfully used in hydrological research, such as rainfall-runoff modeling, stream flow
forecasting, precipitation forecasting, groundwater modeling, water quality and management
modeling (ASCE 2000); (Maier and Dandy 2000).

Recently, the ANNs and adaptive neuro-fuzzy inference system (ANFIS) techniques have
been successfully used in hydraulic sciences. Yang and Chang (2005) investigated the
applicability of ANNs for simulating velocity profiles, velocity contours and for estimating
the discharges accordingly. Chu and Chang (2009) used a neuro-fuzzy technique for modeling
a dynamic groundwater remediation design. Kocabas and Ulker (2006) estimated the critical
submergence for an intake in a stratified fluid media by using a neuro-fuzzy approach. Dogan
et al. (2007) predicted the sediment concentration obtained by experimental study by using
ANNs. Cobaner et al. (2008) used an ANN model for estimating bridge backwater. Mamak
et al. (2009) successfully used ANFIS and ANN techniques for bridge afflux analysis through
arched bridge constrictions. Kocabas et al. (2009) used the ANNs approach for predicting the
critical submergence for an intake in a stratified fluid media. Bilhan et al. (2010) used two
different neural network techniques for modeling lateral outflow over rectangular side weirs.
Emiroglu et al. (2010) predicted the discharge coefficient of a triangular labyrinth side weir
located on a straight channel by using ANFIS. Emiroglu et al. (2011) estimated the discharge
capacity of a triangular labyrinth side-weir located on a straight channel by ANNs. Kisi et al.
(2013) successfully used the ANFIS approach for estimating the discharge capacity of
rectangular side weirs. Emiroglu and Kisi (2013) predicted discharge coefficient for the
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trapezoidal labyrinth side weirs located on a straight channel. To the best knowledge of the
authors, there is no published work related to the application of the ANFIS and ANN methods
for prediction of mean velocity and discharge of natural streams. Iglesias et al. (2014) studied
on turbidity prediction in river basin in Spain. They used artificial neural networks for turbidity
prediction in order to lower costs in the quality assessment of water bodies.

In this paper, the applicability of the ANNs and ANFIS approaches for modeling mean
velocity and discharge of streams is investigated. The results are compared with the multiple-
linear regression model (MLR).

2 Field Measurements

Flow measurements were implemented at four different cross-sections in two different
streams in central Turkey. These stations within the Kızılırmak basin are Barsama,
Bünyan and Şahsenem on the Sarımsaklı Stream, which is a tributary of the Kızılırmak
River (Fig. 1). The other station within the Seyhan basin, named Sosun, is on the Sosun
stream, which is a tributary of the Zamantı River. Six velocity measurements were
carried out for each of the Barsama, Bünyan and Şahsenem stations between 2005 and
2010. Four velocity measurements were carried out for Sosun station between 2009 and
2010. The velocity measurements were undertaken by using Acoustic Doppler
Velocimeter (ADV). The ADV measures three-dimensional flow velocities (u, v, w) for
x, y, z dimensions in a sampling volume using the Doppler shift principle. During flow
measurements, according to the water surface width, cross-sections were split into a
number of slices. Point velocities for each vertical slice were measured in the vertical
direction starting from a point that is 4 cm above the streambed. Measurements were
repeated every 2 cm from this point to water surface.

The flow characteristics at each site are given in Table 1. In this table the first and second
columns show visit numbers and dates, Q is the discharge calculated by velocity-area method,

Fig. 1 Location of the study area and measured stations, Barsama, Bünyan, Şahsenem and Sosun
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Um (=Q/A) is the mean velocity, where A is the area of the cross section, uws is the measured
water surface velocity, Hmax is the maximum flow depth, T/R is the aspect ratio, with T is the
surface water width, R (=A/P) is the hydraulic radius, P is the wetted perimeter, Sws is the
water surface slope, Re (=4UmR/ ) is the Reynolds number, and is the kinematic viscosity,
and Fr (=Um/(gHmax)

1/2 is the Froude number, where g is the gravitational acceleration. Froude
and Reynolds numbers show that all the flow measurements were made under subcritical and
turbulent flow conditions. Determining of water surface velocity, uws, is much easier than
determining mean and maximum velocities in streams. Water surface velocity can be easily
determined with an object that is movable on the water surface and not too heavy, such as
leaves, twigs and so on.

3 Computation of Mean Velocity and Discharge in Stream Flow

The velocity-area method is the most commonly used method in discharge measure-
ment (Ardiclioglu et al. 2012). While discharge is determined by the velocity area
method, mean vertical velocity is also needed. For this purpose, the measured cross-
section is divided into vertical slices as shown in Fig. 2. The mean vertical velocities
Ui, can be calculate using Eq. (1), where aj, is the area under the velocity distribution,

Table 1 Flow characteristics for Barsama, Bünyan, Şahsenem and Sosun stations

Stations Date
(d/m/y)

Q
(m3/s)

Um

(m/s)
uws
(m/s)

Hmax

(m)
T (m) T/R Sws Re

(x106)
Fr

Barsama_1 28/05/2005 1,810 0,890 1,60 39,0 8,3 34,00 0,0091 0,76 0,481

Barsama_2 19/05/2006 2,440 1,051 1,85 40,0 9,0 35,20 0,0036 0,94 0,531

Barsama_3 19/05/2009 3,930 1,214 2,08 45,0 9,0 29,70 0,0094 1,47 0,578

Barsama_4 31/05/2009 0,970 0,590 1,14 26,0 8,4 45,40 0,0092 0,40 0,333

Barsama_5 24/03/2010 1,510 0,806 1,55 38,0 8,6 34,40 0,0097 0,61 0,417

Barsama_6 18/04/2010 2,150 0,865 1,63 38,2 8,8 22,10 0,0120 0,85 0,421

Bünyan_1 24/06/2009 0,788 0,354 0,65 72,0 4,0 7,00 0,0020 0,71 0,133

Bünyan_2 08/02/2010 0,434 0,214 0,40 66,0 4,0 7,50 0,0030 0,40 0,084

Bünyan_3 27/09/2009 0,636 0,301 0,54 72,0 3,9 8,20 0,0022 0,50 0,113

Bünyan_4 04/04/2010 1,082 0,405 0,74 85,0 4,0 7,30 0,0018 0,78 0,140

Bünyan_5 16/05/2010 1,188 0,426 0,54 86,0 4,0 7,00 0,0024 0,85 0,147

Bünyan_6 20/06/2010 0,708 0,286 0,53 79,0 3,9 7,30 0,0010 0,53 0,103

Şahsenem_1 29/03/2006 0,816 0,600 1,04 28,0 6,0 26,80 0,0059 0,47 0,350

Şahsenem_2 20/10/2007 0,718 0,529 0,93 32,0 5,4 21,90 0,0061 0,46 0,298

Şahsenem_3 22/03/2008 0,792 0,565 0,80 33,0 6,0 22,10 0,0037 0,49 0,314

Şahsenem_4 03/05/2008 0,613 0,518 1,00 32,0 5,4 25,10 0,0045 0,39 0,307

Şahsenem_5 11/10/2008 0,667 0,536 1,01 32,0 5,5 22,00 0,0046 0,44 0,303

Şahsenem_6 08/11/2008 0,732 0,516 1,00 34,0 5,6 19,60 0,0064 0,51 0,282

Sosun_1 19/05/2009 0,886 0,561 0,96 62,0 3,2 7,49 0,0032 0,84 0,227

Sosun_2 31/05/2009 0,294 0,285 0,63 43,0 3,0 9,49 0,0016 0,32 0,144

Sosun_3 24/03/2010 0,338 0,327 0,63 45,0 2,9 8,85 0,0026 0,37 0,156

Sosun_4 18/04/2010 0,529 0,541 0,93 54,0 2,3 6,53 0,0034 0,67 0,235
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uj-1and uj are the velocities and hj is the length between two velocity measurements as
shown in Fig. 2.

Ui ¼
X

a j

Hi
¼
X uj þ ujþ1

� �
2

hj

Hi
ð1Þ

Slice area Ai can be calculated by Eqs. (2) and (3) is used for slice discharge where Ai is the
slice area and the total flow rate of the stream is determined as the sum of the flows through all
the subsections using Eq. (4). In this equation n

Ai ¼ biHi ð2Þ

qi ¼ UiAi ð3Þ

Q ¼
X
i¼1

n

qi ¼
X
i¼1

n

UiAi ð4Þ

4 Methods

4.1 Artificial Neural Networks

Artificial neural networks (ANNs) are inspired by the biological nervous system but by
disregarding much of the biological detail. ANNs are massively parallel systems which consist
many processing elements. The network is composed of layers comprising parallel processing
elements, called neurons. Each layer is fully connected to the proceeding layer by intercon-
nection. A three layered ANN composed of layers i, j, and k, with the interconnection weights
Wij and Wjk between layers is illustrated in Fig. 3. Initial weight values are randomly assigned
and then progressively corrected during a training process. This process compares calculated

Fig. 2 Calculation of vertical mean velocity in measured vertical
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outputs to known outputs and backpropagates any errors (from right to left in Fig. 3). Thus, the
appropriate weights are adjusted by minimizing the errors (Kisi 2005; Emiroglu and Kisi
2013).

Each neuron in layers j and k receives the x input which is the weighted sum of outputs
from the previous layer. As an example, y for layer j is given by

ypj ¼
X
i¼1

I

W ijOpi þ θ j ð5Þ

Where θj=a bias for neuron j, Opi is the ith output of the previous layer andWij is the weight
between the layers i and j. An output f (y) is calculated from each neuron in layers j and k by
passing its value of y through a non-linear transfer (activation) function. A commonly used
transfer function is the logistic function

f yð Þ ¼ 1

1þ e−y
ð6Þ

Detailed theoretical information about ANNs can be found in Haykin (2009).

4.2 Adaptive Neuro Fuzzy Inference System (ANFIS)

The Adaptive Neuro Fuzzy Inference System (ANFIS), which was first introduced by Jang (1993),
is a universal approximator and is capable of approximating any real continuous function. ANFIS
has a network structure composed of a number of nodes connected through directional links. Each
node has a function which consists of fixed or adjustable parameters (Jang et al. 1997).

Assume a fuzzy inference system has three inputs (x, y and z) and one output (f) and the rule
base contains two fuzzy IF-THEN rules of Takagi and Sugeno’s type

RULE1 : IFx isA1; y isB1 and z isC1THEN f 1 ¼ p1xþ q1yþ r1zþ s1 ð7Þ

RULE2 : IFx isA2; y isB2 and z isC2THEN f 2 ¼ p2xþ q2yþ r2zþ s2 ð8Þ

Fig. 3 A three-layer ANNs architecture (Kisi 2005)
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where f1 and f2 indicate the output function of rule 1 and rule 2, respectively. The ANFIS
architecture is demonstrated in Fig. 4. The node functions in each layer are summarized next.

Every node i in layer 1 has an adaptive node function

Ol;i ¼ φAi xð Þ; for i ¼ 1; 2; ð9Þ
where x is the input to the ith node and Ai is a linguistic label such as “small” or “big” associated
with this node function.Oli is the membership function of a fuzzy set A (= A1, A2, B1, B2, C1, or
C2). It specifies the degree to which the given input x satisfies the quantifier Ai. φAi(x) is usually
chosen to be Gaussian function with a minimum equal to 0 and maximum equal to 1

φAi xð Þ ¼ exp −
x−ai
bi

� �2
 !

ð10Þ

where {ai, bi} are the parameters. As the values of these parameters change, the Gaussian
function varies accordingly, thus exhibiting various forms of membership functions on linguis-
tic label Ai (Jang 1993). The parameters of this layer are called premise parameters (Emiroglu
and Kisi 2013).

Every node in layer 2 multiplies the incoming signals and sends the product out. For
instance,

wi ¼ φAi xð ÞφBi yð ÞφCi zð Þ; i ¼ 1; 2: ð11Þ
The output of each node indicates the firing strength of a rule.
In layer 3, the ratio of the ith rule’s firing strength to the sum of all rules’ firing strengths is

calculated by ith node as

w�i ¼ wi

w1 þ w2
; i ¼ 1; 2: ð12Þ

Every node in layer 4 has a function as

O4;i ¼ w
�

i f i ¼ w
�

i pixþ qiyþ rizþ sið Þ ð13Þ

Fig. 4 ANFIS architecture (Emiroglu and Kisi 2013)
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where wi is the output of layer 3, and {pi,qi,ri,si} are the parameters. Each parameter of this
layer is called a consequent parameter.

The single node in layer 5 computes the final output as the summation of all incoming
signals

O5;i ¼
X
i¼1

w�i f i ¼

X
i

wi f iX
i

wi

ð13Þ

Thus, an ANFIS network is constructed which is functionally equivalent to a first-order
Sugeno (FIS). Detailed information on ANFIS can be found in (Jang 1993).

4.3 Application and Results

Three different program codes were written by using MATLAB software for the ANN, ANFIS
andMLR simulations. The water surface velocity uws and water surface slope Sws were used as
inputs to the models to estimate the mean velocity and discharges of the natural streams. For
the ANN, ANFIS and regression analyses, the 2,184 measured data were used in the study.
The data were randomly permutated and divided into two parts for training and testing. The
first 1,747 data (80 % of the whole data) were used for training and the remaining 437 data
(20 % of the whole data) were used for testing. Before applying the ANNs to the data, the
training input and output values were normalized using Eq. (14)

c1
xi−xmin

xmax−xmin
þ c2 ð14Þ

where xmin and xmax are the minimum and maximum of the training and test data. Different
values can be assigned for the scaling factors of c1 and c2 because there are no fixed rules as to
which standardization approach should be used in particular problems (Dawson and Wilby
1998). The c1 and c2values were respectively taken as 0,6 and 0,2 in the present study. Thus,
the input and output data were normalized between 0,2 and 0,8. The appropriate model
structure was determined by using different ANN structures. The root mean square errors
(RMSE), mean absolute relative errors (MARE) and determination coefficient (R2) statis-
tics were used for evaluating the model accuracies. The RMSE and MARE can be
expressed as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i¼1

N

Y i;measured − yi;estimate
� �2

vuut ð15Þ

MARE ¼ 1

N

X
i¼1

N yi;measured − yi;estimate
�� ��:100

yi;measured
ð16Þ

where N is the number of the data set and yi is the mean velocity or discharge.
Two different input combinations were used in this study for estimating the mean velocity

and discharge of the natural streams. Different hidden node numbers were tried for each ANN
model to determine the optimal one. The conjugate gradient algorithm (CGA) was used for
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training ANNmodels because CGA is more powerful and faster than the conventional gradient
descent technique (Kisi 2007). The sigmoid and linear activation functions were used for the

Table 2 Training and test results of the ANN, ANFIS and MLR models in mean velocity estimation

Input Control parameters Training Test

RMSE MARE R2 RMSE MARE R2

ANN

uws 8 0,028 4,50 0,988 0,034 4,80 0,986

uws and Sws 10 0,025 4,17 0,991 0,029 4,58 0,989

ANFIS

uws (gaussmf, 7) 0,022 3,30 0,993 0,026 3,66 0,991

uws and Sws (gaussmf, 4) 0,011 1,06 0,998 0,014 1,47 0,997

MLR

uws (0,56) 0,037 7,31 0,964 0,052 7,24 0,966

uws and Sws (0,59–6,13) 0,035 7,19 0,967 0,050 7,04 0,968

Fig. 5 Time variation of the measured and estimated mean velocities by ANN, ANFIS and MLR models
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hidden and output nodes, respectively. The ANN training was stopped after 1,000 epochs. The
training and test results of the optimal ANNs models are given in Table 2 for estimating mean
velocity. The optimal hidden node numbers are also provided in the second column of this
table. It is clear from the table that the ANN model comprising inputs uws and Sws performs
better than the other model. To obtain the appropriate ANFIS model, different numbers of
membership functions were tried. Table 2 compares the training and test performances of the

y = 0.9862x + 8E-05 
R² = 0.9764 

0

0.5

1

1.5

0 0.5 1 1.5

A
N

N
, m

/s
 

Measured, m/s 

y = 0.9981x + 0.0004 
R² = 0.9973 

0

0.5

1

1.5

0 0.5 1 1.5

A
N

FI
S,

 m
/s

 

Measured, m/s 

y = 0.9794x + 0.0019 
R² = 0.9683 

0

0.5

1

1.5

0 0.5 1 1.5

M
L

R
, m

/s
 

Measured, m/s 

Fig. 6 The scatterplots of the measured and estimated mean velocities by ANN, ANFIS and MLR models
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ANFIS models in mean velocity estimation. The second column of this table gives the type
and optimal number of membership functions. It is clear from the table that the ANFIS model
comprising four Gaussian membership functions for the inputs, uws and Sws has the lowest
RMSE (0,014), MARE (1,47) and the highest R2 (0,997) values in test period. The accuracy of
the MLR model for each input combination is given in the last part of Table 2. The regression
coefficients of the MLR models are also provided in the second column of this table. It is
clearly seen from the table that the MLR model with two inputs performs slightly better than
the first MLR model. A comparison of the models in Table 2 indicates that the both ANN and
ANFIS models perform better than the MLR model. ANFIS model has the lowest RMSE and
MARE and the highest R2 values.

Time variation of the measured and estimated the mean velocities by the ANN, ANFIS and
MLR models is illustrated in Fig. 5. It is clear from the figure that the estimates of the ANFIS
model are closer to the measured mean velocity values than those of the ANNs and MLR
models. Underestimations are clearly seen for the MLR model. Figure 6 compares the
scatterplots of the each model’s estimates in the test period. It is clear from the figure that
the ANFIS has less scattered estimates than the ANN and MLR models. The MLR model
seems to have the least accuracy.

The training and test results of the discharge estimates by the ANN, ANFIS and MLR
models are shown in Table 3. As found for the previous application, the ANN model showed
the best accuracy for the second input combination (uws and Sws). The accuracies of the ANFIS
models are given in Table 3. It is clear from the table that the ANFIS model whose inputs are
uws and Sws has the best accuracy both in the training and test periods. Table 3 gives the
training and test statistics of the discharge estimates by the MLR model. From the table, it is
clear that the MLR model comprising the second input combination has the best accuracy in
discharge estimation. The comparison of the models given in Table 3 clearly reveals that both
the ANN and ANFIS models perform much better than the MLR model. The ANFIS model
has a lower RMSE (0,063) and MARE (3,47) and the higher R2 value (0,996) than the ANN
model (RMSE=0,146, MARE=14,10, R2=0,978).

Time variation of the estimated mean discharges by the ANN, ANFIS and MLR models is
compared in Fig. 7. The superiority of the ANFIS model over the ANN and especially the
MLR models is clearly seen from the figures. The MLR model significantly under/over
estimates measured discharge values. Figure 8 demonstrates the scatter plots for discharge
estimates of each models estimate in the test period. It is clear from the figure that the estimates

Table 3 Training and test results of the ANN, ANFIS and MLR models in discharge estimation

Input Control parameters Training Test

RMSE MARE R2 RMSE MARE R2

ANN

uws 1 0,207 24,6 0,944 0,218 21,4 0,95

uws and Sws 3 0,145 16,4 0,973 0,146 14,1 0,97

ANFIS

uws (gaussmf, 7) 0,123 10,4 0,980 0,142 10,9 0,97

uws and Sws (gaussmf, 4) 0,050 2,89 0,997 0,063 3,47 0,99

MLR

uws (1,19) 0,487 44,6 0,771 0,539 40,3 0,77

uws and Sws (1,19) 0,487 44,6 0,771 0,539 40,3 0,77

Determination of Mean Velocity and Discharge in Natural Streams



of the ANFIS are less scattered and closer to the exact line (line 45°) than the ANN and MLR
models. The MLR model seems to be insufficient in estimating discharge.

5 Conclusion

The ANN and ANFIS models were developed to determine the mean velocity and discharge of
streams. The 2,184 field data obtained from four different cross-sections at four sites on the
Sarımsaklı and Sosun streams in central Turkey were used in this study. The water surface
velocity uws and water surface slope Sws were used as inputs to the models to estimate the
mean velocity and discharges. After trying different numbers of hidden neurons and member-
ship function types, the optimal ANNs and ANFIS models were obtained. The accuracy of
both models was compared with those of the multiple-linear regression models. Comparison
results indicated that the ANFIS model performed better than the ANNs and regression models
in mean velocity and discharge estimation. Also, the ANN model was found to be better than
the multiple-linear regression model. The optimal ANFIS models respectively reduced the root
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Fig. 7 Time variation of the measured and estimated discharges by ANN, ANFIS and MLR models
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mean square errors and mean absolute relative errors by 88 % and 91 % and increased the
determination coefficient by 28 % with respect to the optimal MLR model. The study
recommends that the ANFIS technique can be successfully used in estimation of the mean
velocity and discharge of natural streams.
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