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A comparative evaluation of shear stress modeling based

on machine learning methods in small streams

Onur Genç, Bilal Gonen and Mehmet Ardıçlıoğlu
ABSTRACT
Predicting shear stress distribution has proved to be a critical problem to solve. Hence, the basic

objective of this paper is to develop a prediction of shear stress distribution by machine learning

algorithms including artificial neural networks, classification and regression tree, generalized linear

models. The data set, which is large and feature-rich, is utilized to improve machine learning-based

predictive models and extract the most important predictive factors. The 10-fold cross-validation

approach was used to determine the performances of prediction methods. The predictive

performances of the proposed models were found to be very close to each other. However, the

results indicated that the artificial neural network, which has the R value of 0.92± 0.03, achieved the

best classification performance overall accuracy on the 10-fold holdout sample. The predictions of all

machine learning models were well correlated with measurement data.
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INTRODUCTION
River flows are affected by turbulent processes and also

have complex and three-dimensional structures. Owing to

this, to explain the behaviors of flow properties such as dis-

charge, velocity, and shear stress distributions is difficult.

The distribution of shear stress in an open channel is influ-

enced by many factors, such as roughness, the structure of

the secondary current, existence of free water surface, and

the geomorphology of the cross section (Ghosh & Roy

; Knight & Patel ; Yang & Lim ). The shear

stress and its distribution have great importance for the

estimation of sediment and pollutant transport, river resist-

ance, bank protection, and river management in hydraulic

engineering.

The pioneer investigations on shear stress distribution

were carried out by Leighly (). Recently, much research

has been performed in order to determine shear stress distri-

bution using direct and indirect methods. Knight ()

proposed an empirical equation for the distribution of

shear stress along the channel wetted perimeter.

Jin et al. () developed a semi-analytical model to

predict the boundary shear stress distribution in straight,
non-circular ducts and open channels. They reached a satis-

factory result to predict the boundary shear along the whole

length of the side walls of trapezoidal and rectangular chan-

nels. Yang () improved a method for determining shear

stress distribution in steady, uniform, and fully developed

turbulent flows by applying an order-of-magnitude analysis

to the Reynolds equations. He accurately predicted mean

shear stress in trapezoidal channels without empirical coef-

ficients involved. Javid & Mohammadi () calculated the

average bed and wall shear stress in a straight prismatic tra-

pezoidal channel using Guo and Julien’s method. They

found R2¼ 0.99, and average relative error less than 5.35%

in this method.

Bonakdari & Levacher () studied boundary shear

stresses for rectangular open channels of different rough-

ness, using computational fluid dynamics (CFD). Yang

() established a theoretical relationship between the

boundary shear stress and depth-averaged apparent shear

stress in open channels.

Machine learning algorithms (MLAs) are an alternative

approach to predicting the flow properties in hydraulics
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engineering. The input and output variables are selected for

the MLA and can be used with modern regression tech-

niques to fit the measured data. MLAs include the training

and testing parts to develop models that can be learnt

from experience and data (Mitchell ).

Bhattacharya et al. () modeled the sediment trans-

port using two machine learning approaches (artificial

neural networks (ANNs) and model trees). For field

measurements, the MLA models outperform the existing

models. In addition, the MLA model gives the least errors.

They stressed that the utilization of MLA in sediment trans-

port modeling can be proposed, and further research in this

area is strongly recommended.

Samandar () investigated the friction coefficient in

open channel flow using an adaptive neural-based fuzzy

inference system (ANFIS). He showed that there is a good

correlation between the experimental data and predicted

results. Genc et al. () studied the mean velocity and dis-

charge for small streams using ANNs and ANFIS. They

compared the accuracy of these models using multiple-

linear regression models and found that the ANFIS model

performed better than the ANN.

MLA has been applied to flood forecasting by Han et al.

(). They investigated an optimum selection among a

large number of various input combinations and parameters

for any modelers in using support vector machines (SVM).

They made a comparison with some benchmarking

models such as transfer function, trend and naive models.

They reported that SVM is able to surpass all of these

models in the test data, at the expense of a huge amount

of time and effort. They also revealed that linear and non-

linear kernel functions can yield superior performances

against each other under different circumstances in the

same catchment (Shrestha et al. ).

Azamathulla & Jarrett () investigated the utilization

of gene-expression programing to estimate the Manning’s

roughness coefficient for high-gradient streams. The deter-

mination of Manning’s n values has much importance for

researchers and field engineers. They have reached substan-

tially more effective results than the classical methods.

The basic aim of this paper is to investigate the applica-

bility of the MLA approach as a reliable and efficient

method to determine the shear stress in small streams. The

velocity measurements, which were carried out by the first
and third author in central Turkey, were utilized to model

the shear stress.
A BRIEF REVIEW OF THE SHEAR STRESS
DISTRIBUTION FOR OPEN CHANNELS

Shear stress distribution is related to the shape of the cross

section, flow resistance, sediment transport rate, side wall

correction, and channel erosion, etc. Shear stress is not

always uniformly distributed over the perimeter of the

cross section. A simplifying cross section averaging one-

dimensional hydraulic equations was preferred to determine

the flow properties in small streams. Conventional methods

include velocity samples and empirical formulas. Some

characteristics, such as the energy line slope and the rough-

ness, tend to vary with time and water depth section by

section through the flow direction. Therefore, application

of traditional methods is difficult particularly in an unsteady

non-uniform flow (Ardiclioglu et al. ). For uniform flows,

average shear stress at a cross section can be given as the fol-

lowing equation:

τ0 ¼ γRS (1)

where τ0 expresses the shear stress. γ shows the specific grav-

ity of water. R is the hydraulic radius (¼A/P in which A is

the wetted area and P is wetted perimeter). S is the energy

line slope.

Schlicting () proposed another approach that based

logarithmic relation between the shear velocity and the vari-

ation of velocity with height for local bed shear stress

u
u� ¼ 1

χ
ln

z
ks=30

� �
(2)

where u signifies the velocity at z. z represents the distance

from the bottom of the roughness elements. u* indicates

the shear velocity, (¼(τ0/ρ)
1/2, in which ρ is the water den-

sity). χ shows the von Karman constant. ks is the

Nikuradse’s original uniform sand grain roughness. When

shear velocities, u*, are known, mean shear stresses can be

calculated for any vertical.
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DATA SOURCES AND FIELD MEASUREMENTS

In this paper, the data source that was used to validate the

methodology was collected through field measurements in

central Turkey. Turkey has a semi-arid climate with some

extremities in temperature. Winters are long and cold in

Central and Eastern Anatolia, but mild and short in coastal

regions. Flow measurements were carried out by a team that

consisted of the first and third authors.

The data set was obtained using the acoustic Doppler

velocimeter (ADV) in four different small streams. At the

stations shown in Figure 1, 22 field measurements were per-

formed to model the shear stress distribution on the

Zamantı River, located in the Seyhan basin, and the Kızılır-

mak River, located in the Kızılırmak basin. Bunyan,

Barsama, and Şahsenem stations are on Sarımsaklı

Stream, a tributary of the Kızılırmak River which is the long-

est river in Turkey. Sosun station is on the Sosun Stream,

which is a branch of the Zamantı River.

Each data file consists of information about flow proper-

ties that were obtained in these stations between the dates

2005 and 2010. It includes measured flow characteristics,

which are given in Table 1.

In Table 1, columns 1 and 2, the stations’ names, number

of measurements, and dates are presented. In column 3, Q

denotes the discharges that were determined using the vel-

ocity–area method. In columns 4 and 5, the mean velocity,

Um, and the free water surface velocity, uws, may be seen

respectively. The cheapest and easiest way to determine
Figure 1 | Location of the study area and measurement stations at Bünyan, Barsama, Şahsen
water surface velocity is to simply float something down the

stream and see how fast it goes. In field measurements,

water surface velocities, uws, were readily obtained with an

object that is movable on the water surface. In this study, a

chronometer was used to measure how many seconds it

took for a tree branch to pass a distance of 10 meters.

In Table 1, columns 6–9, variables pertaining to the

shape of the measured cross section are presented. A is

the cross section area. Hmax is the maximum water depth.

T is the water surface width. T/R is the aspect ratio, with

R (¼A/P) being the hydraulic radius where P is the wetted

perimeter. As seen in column 10, Sws is the water surface

slope. In column 11, Re (¼4UmR/ʋ) is the Reynolds

number, with ʋ being the kinematic viscosity. In column

12, Fr (¼Um/(gHmax)
1/2) is the Froude number where g is

the gravitational acceleration. According to the water sur-

face width, T cross sections were divided by number of

slices, n, for each flow condition.

According to the measurement data, these stations are

relatively small with shallow streams, where the maximum

water depths range between 0.26 and 0.86 m in the measured

cross sections. Thewater surfacewidth varies between values

of 2.3 and 9.0 m. Re numbers vary between the values 0.32 ×

106 and 1.47 × 106 and Froude number are between the

values 0.084 and 0.578. When considering the Re and Fr

numbers, these stations have turbulent flow conditions.

Recent studies showed that the ADV device is well-

suited to measure turbulent velocities in small streams;

therefore, it is assumed that the velocity signal outputs are
em, and Sosun (Ardiclioglu et al. 2012).



Table 1 | Main flow characteristics for measurements

Stations Dates Q Um uws A Hmax T T/R Sws Re (×106) Fr n
d/m/y m3/s m/s m/s m2 m m

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Barsama_1 28/05/2005 1.810 0.890 1.600 2.23 0.39 8.3 34.00 0.0091 0.76 0.481 7

Barsama_2 19/05/2006 2.440 1.051 1.850 2.03 0.40 9.0 35.20 0.0036 0.94 0.531 7

Barsama_3 19/05/2009 3.930 1.214 2.080 2.11 0.45 9.0 29.70 0.0094 1.47 0.578 9

Barsama_4 31/05/2009 0.970 0.590 1.140 2.67 0.26 8.4 45.40 0.0092 0.40 0.333 8

Barsama_5 24/03/2010 1.510 0.806 1.550 2.79 0.38 8.6 34.40 0.0097 0.61 0.417 4

Barsama_6 18/04/2010 2.150 0.865 1.630 2.48 0.38 8.8 22.10 0.0120 0.85 0.421 5

Şahsenem_1 29/03/2006 0.816 0.354 1.040 2.04 0.72 6.0 26.80 0.0059 0.47 0.350 5

Şahsenem_2 20/10/2007 0.718 0.214 0.930 2.32 0.66 5.4 21.90 0.0061 0.46 0.298 9

Şahsenem_3 22/03/2008 0.792 0.301 0.800 3.24 0.72 6.0 22.10 0.0037 0.49 0.314 9

Şahsenem_4 03/05/2008 0.613 0.405 1.000 1.64 0.85 5.4 25.10 0.0045 0.39 0.307 9

Şahsenem_5 11/10/2008 0.667 0.426 1.010 1.87 0.86 5.5 22.00 0.0046 0.44 0.303 9

Şahsenem_6 08/11/2008 0.732 0.286 1.000 2.48 0.79 5.6 19.60 0.0064 0.51 0.282 10

Bünyan_1 24/06/2009 0.788 0.600 0.650 1.40 0.28 4.0 7.00 0.0020 0.71 0.133 7

Bünyan_2 08/02/2010 0.434 0.529 0.400 1.36 0.32 4.0 7.50 0.0030 0.40 0.084 7

Bünyan_3 27/09/2009 0.636 0.565 0.540 1.40 0.33 3.9 8.20 0.0022 0.50 0.113 6

Bünyan_4 04/04/2010 1.082 0.518 0.740 1.18 0.32 4.0 7.30 0.0018 0.78 0.140 4

Bünyan_5 16/05/2010 1.188 0.536 0.540 1.24 0.32 4.0 7.00 0.0024 0.85 0.147 4

Bünyan_6 20/06/2010 0.708 0.516 0.530 1.40 0.34 3.9 7.30 0.0010 0.53 0.103 4

Sosun_1 19/05/2009 0.886 0.561 0.960 1.58 0.62 3.2 7.49 0.0032 0.84 0.227 6

Sosun_2 31/05/2009 0.294 0.285 0.630 1.03 0.43 3.0 9.49 0.0016 0.32 0.144 5

Sosun_3 24/03/2010 0.338 0.327 0.630 1.03 0.45 2.9 8.85 0.0026 0.37 0.156 5

Sosun_4 18/04/2010 0.529 0.541 0.930 0.98 0.54 2.3 6.53 0.0034 0.67 0.235 5

Figure 2 | Velocity measurements at Şahsenem Station (Ardiclioglu et al. 2012).
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‘true’ turbulent velocity data (Chanson et al. ). For our

measurements, SonTek Flow Tracker was preferred. Some

technical characteristics of ADV are given as follows by

SonTek handheld: velocity range, ±0.001–4.5 m/s; velocity

resolution, 0.0001 m/s; velocity accuracy, ±1% of measured

velocity; operating temperature, �20–50 WC (SonTek ).

ADV is designed to record instantaneous three-dimensional

(u, v, w) velocity components in a sampling volume using

Doppler shift effect (Zedel et al. ; Nikora & Goring

). ADV can measure and record velocity samples by

sending out short acoustic waves from the transmitter

probe. Point velocities were measured in the vertical direc-

tion starting from a point that is 4 cm above the streambed

for each vertical slice. The same procedure was repeated

every 2 cm from this point to the water surface for each ver-

tical slice. Meanwhile, the ADV remained in a fixed position

in the stream. The probe position was adjusted manually
vertical by vertical. An illustrative photo of site surveying

and flow measurement at the Şahsenem station is shown

in Figure 2.
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In these field measurements, each vertical velocity distri-

bution along the cross section at four stations was

determined. As mentioned above, according to the water

surface width, the number of verticals at each station

measured cross section was decided. The number of verti-

cals varies from 4 up to 10. Afterwards, shear stress

distribution in the measured vertical was calculated using

these vertical velocity distributions. The shear velocity, u*,

and roughness parameter, ks, can be determined by

Equation (2) using the von Karman constant, 1/χ¼ 25, pro-

posed by Sümer () for given measured velocity profile

u(z). The point velocities, u, against z are plotted in semi-

log graphs. The 0.1H� z� (0.2–0.3)H interval shows

where the logarithmic layer is supposed to lie, as given in

Figure 3. The z axis shows the water depth, H, at a measured

vertical. Extending the straight line portion of the velocity

distribution finds its z-intercept, and this is equal to ks/30.

Using ks/30 values and shear velocities, u*, having the best

fit with measured data can be determined by Equation (2).

A sample vertical velocity distribution can be seen in

Figure 3 for Şahsenem_2 at y¼ 170 cm. First, the measured

vertical velocities, u, were plotted against H in a semi-log

graph, and the logarithmic layer was determined for

measured vertical slices, as seen in Figure 3(b). Using this
Figure 3 | Velocity distribution for Şahsenem_2, y¼ 170 cm.

Table 2 | Parameters to calculate the shear stress distribution at Şahsenem_2 station

y (cm) 70 120 170 220

ks/30 1.95 1.20 1.85 1.60

u* (m/s) 0.09 0.10 0.12 0.11

τ0 (N/m2) 8.46 10.40 13.46 12.54
straight line, ks/30 value was obtained as 1.85 (in bold) in

Table 2. Then, shear velocities u* having the best fit with

measured data were determined using Equation (2) by trial

and error method.

Figure 3(a) shows that the best fit velocity distributions

were obtained for measured data by estimated shear vel-

ocities as 0.12 m/s (in bold). For each measurement, shear

velocities, u*, were calculated using vertical measured vel-

ocities for the cross section. Shear velocities have been

calculated for all measurements. When shear velocities u*

were known, shear stress distribution can be calculated by

τ0¼(u*)
2ρ in measured vertical slices. The specific weight of

water was used as ρ¼ 1000 kg/m3.

Similar studies were done for all flow conditions at the

stations. In Table 2, the obtained roughness parameter, ks/30,

is given in line 1, obtained shear velocities, u*, in line 2,

and lateral measured point distance from channel wall

through measurement direction, y, in line 3. Calculated

shear stress in the measured vertical is presented in line

4. Also, calculated shear stress distribution is demonstrated

in Figure 4. It is seen that shear stress distribution in the

middle of the cross section increases and close to the side-

wall decreases. Similar studies were done for all flow

conditions at stations.
270 320 370 420 470

1.60 1.40 1.90 1.90 2.00

0.13 0.10 0.12 0.10 0.09

15.88 10.00 14.40 9.12 7.23



Figure 4 | Calculated shear stress distribution for Şahsenem_2 station.
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PREDICTION MODELS

Predictive modeling is the process by which a model is cre-

ated or chosen to try to best predict the probability of an

outcome (Geisser ). In many cases, the model is

chosen to guess the probability of an outcome given a set

amount of input data, not unlike an email determining

how likely it is that it is spam. Predictive analytics is a

broad term describing a variety of statistical and analytical

techniques used to develop models that predict future events

or behaviors. The form of these predictive models varies,

depending on the behavior or event that they are predicting.

Most predictive models generate a score (a credit score, for

example), with a higher score indicating a higher likelihood

of the given behavior or event occurring (Nyce ).
ANNs

ANNs are one of themost popular machine learningmethods.

ANN has the capability of learning the mathematical corre-

lation between input and output of nonlinear systems. The

concept of ANN comes from the operation of neurons in the

human brain. An artificial neuron is an engineering approach

of a biological neuron. It has multiple inputs and one output.

ANNconsists of a large number of simple processing elements

that are interconnected with each other and layered (Li ;

Christos & Siganos ). ANN has artificial neurons and

these neurons receive inputs from other elements. These

inputs are weighted and summed. After this operation, the

result is transformed by a transfer function into the output.

Neurons are connected in an organized way and form a

neural network. In the feed-forward neural networks, also
known as multilayer perceptrons, the neurons are in layers

(Figure 5). Usually, there is one layer as an input layer, one

layer as an output layer, and between the input and output

layers are the hidden layers. Hidden layers may be one or

more layers. Each layer is fully connected with the layers

before and after them. There are weights associated with the

connections that go from one neuron to another neuron.

These weights represent the strength of influence between

the neurons. To make the predictions, information goes

from an input layer, passes through the hidden layers, and

finally reaches the output layer (IBM SPSS Modeler ).

Classification and regression tree

The classification and regression tree (C&R-T) model is a tree-

based characterization and prediction method. This method

recursively divides the training set into similar parts. The

C&R model examines the input fields to determine the best

split scenario. At the end of each split, the training records

are split into two subgroups. This is a recursive process, and

this recursion continues until a stopping criterion is met.

The purpose of creating the C&R-T is to have subgroups

with similar output values. This similarity is measured by

some type of node impurity measure. The split is made

only if the split for a branch reduces the impurity by less

than a predetermined value. The least-square deviation cri-

terion is used to calculate the level of impurity for

regression-type problems. There are two fields in the data

set: frequency field and case weight field. These two fields

are used to reduce the size of the data set. The frequency

field means the number of observations that each record rep-

resents. It is useful to reduce the size of the data set, because

instead of having one record for every individual, one record



Figure 5 | A three-layer ANN architecture.
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can represent multiple individuals. The total number of

observations in the sample is the same as the sum of the

values for the frequency field.

The case weight field is used when the records in the

data set are to be treated unequally. This unequal treatment

helps to reduce the size of the data set. Consider a survey

made in a school, where 100 students respond and 10,000

students do not respond. If you define a case weight equal

to 1 for responders and 100 for non-responders, then you

can include all of the responders but just 1% of the non-

responders. This way, the size of the data file can be con-

siderably reduced (IBM SPSS Modeler ).
Generalized linear models

Generalized linear models (GENLINs) are used in many

areas of prediction such as in regression and classification

as well. It makes it possible to look for linear and non-

linear relationships between a continuous, or binomial,

multinomial categorical dependent variable and categori-

cal or continuous predictor variables. This approach is

used when the normality and constant variance assump-

tions are not satisfied. A number of widely used types of

analysis can be considered as special applications of

GENLIN, such as binomial and multinomial logit and
prohibit regression models. A GENLIN usually makes

the distribution assumptions that the response variable

is independent and can have any distribution from an

exponential density family.

Many widely used statistical models belong to GENLIN.

For example, classical linear models with normal errors,

logistic and prohibit models for binary data, log-linear

models for multinomial data, poisson, binomial, gamma

and normal distribution, etc. These can be formulated as a

GENLIN by selecting an appropriate link function and a

response probability distribution. If the identity function is

chosen as the link along with the normal distribution, then

ordinary linear models are recovered as a special case

(Belgin ). GENLINs are an extension of linear

regression models and consist of several components:

1. A dependent variable z whose distribution is parameter

Q.

2. A set of independent variables x1,… , xm and predicted

Y ¼ Pm
i¼1 βixi.

3. A linking function Q¼ f(Y) connecting the parameter Q

of the distribution of z with the Y of the linear model.

When z is normally distributed with mean Q and variance

and when Q¼Y, we have ordinary linear models with

normal errors (McCullagh et al. ).
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K-fold cross-validation

The problem of selecting the best algorithm arises in several

cases (Rice ). Cross-validation is an accuracy estimation

method. Estimating the accuracy of a classifier induced by

supervised learning algorithms is important, not only to pre-

dict its future prediction accuracy, but also for choosing a

classifier from a given set (model selection), or combining

classifiers (Kohavi & John ). Cross-validation is a popu-

lar strategy for algorithm selection. The main idea behind

cross-validation is to split data, once or several times, for

estimating the risk of each algorithm. Part of the data (the

training sample) is used for training each algorithm and

the remaining part (the validation sample) is used for esti-

mating the risk of the algorithm. Then, cross-validation

selects the algorithm with the smallest estimated risk

(Arlot & Celisse ).
Performance criteria

Root mean square errors (RMSE), mean absolute errors

(MAE), residual mean error (RME), and correlation coef-

ficient, R statistics were used as performance criteria to

compare our prediction models. These performance cri-

teria are presented, respectively, as the following forms:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

(yi-observed � yi-estimated)
2

vuut (3)

MAE ¼ 1
N

XN
i¼1

yi-observed � yi-estimatedj j (4)

RME ¼ 1
N

XN
i¼1

(yi-observed � yi-estimated) (5)

In Equations (3)–(5), N is the number of data sets.

yi-observed denotes the target variable, and yi-estimated denotes

the predicted value by the model. Correlation coefficient,

R, can be determined as in Equation (6):

R ¼ n
P

xy�P
x
P

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[n(

P
x2)� (

P
x)2][n

q
(
P

y2)� (
P

y)2]
(6)
In Equation (6), R signifies the sample correlation coef-

ficient. n is the sample size. x is the value of the independent

variable. y is the value of the dependent variable. The higher

the R values indicate a better performance for compared

models (Everitt & Skrondal ).

Sensitivity analysis for models

Sensitivity analysis is a technique which is used to determine

how an independent variable impacts a certain dependent

variable under some assumptions. Sensitivity analysis is a

way to predict the outcome of a decision if a situation

turns out to be different compared to the original prediction.

Sensitivity analysis can be used to test the robustness of the

results of a model or system in the presence of uncertainty. It

can be used to increase the understanding of the relation-

ships between input and output variables in a system or

model. After redundant parts of the model structures are

identified, they can be removed to simplify the model.
CASE STUDY AND DISCUSSION

To demonstrate the suggestedmethodology in the section ‘Pre-

diction models’, a most popular data mining toolkit was

utilized, namely IBM SPSS Modeler 16. The proposed meth-

odology could be applied for determination of shear stress

distribution in small streams. The preliminary analysis

showed that ANN, C&R-T, and GENLIN are the most satis-

factory models (in terms of the presented performance

measures) in predicting the target value, shear stress distri-

bution. The target variable shear stress distribution in

measured vertical, τ0, was predicted through eight observa-

tional variables and calculated non-dimensional parameters.

These parameters which symbolized y/T, z/h, T/H, z/T, z/y,

T/R, Sws, and uws, were defined in the previous sections. The

number of 145 shear stresses, τ0, that were calculated using

Equation (2) for each vertical in the measured cross sections

were modeled in this paper using the proposed methodology.

The results which were obtained by also employing 10-fold

cross-validation for each method are tabulated in terms of dis-

cussed criteria metrics (linear correlation, R, and mean

squared error (MSE)) in Table 3. ANN has the R value of

0.92± 0.03 with the average MSE value of 4.89± 1.79. It is



Table 3 | Ten-fold cross-validation results for the machine learning prediction models

ANNs CR-T GENLIN

Fold MAE (N/m2) R MAE (N/m2) R MAE (N/m2) R

1-fold 7.10 0.92 7.17 0.85 6.00 0.94

2-fold 6.33 0.94 7.38 0.93 5.46 0.93

3-fold 7.15 0.88 7.91 0.93 7.37 0.89

4-fold 3.92 0.95 4.32 0.88 3.85 0.94

5-fold 3.66 0.88 3.15 0.91 2.87 0.95

6-fold 2.09 0.96 3.04 0.80 4.95 0.85

7-fold 4.63 0.92 4.90 0.93 5.55 0.89

8-fold 2.66 0.86 2.78 0.86 3.85 0.84

9-fold 5.88 0.94 5.34 0.94 6.23 0.88

10-fold 5.48 0.93 3.46 0.97 5.13 0.94

Mean 4.89 0.92 4.95 0.90 5.13 0.90

SD 1.79 0.03 1.94 0.05 1.32 0.04

Table 4 | The inputs and performance indices, RMSE, MAE, RME, and R statistics for each

model

Models Inputs
RMSE
(N/m2)

MAE
(N/m2)

RME
(N/m2) R

ANN y/T, z/h, T/H, z/T,
z/y, T/R, Sws,

and uws

7.53 4.89 0.27 0.92

C&R-T y/T, z/h, z/y, T/R,
Sws, and uws

7.82 4.95 0.12 0.90

GENLIN y/T, z/h, T/H, z/T,
z/y, T/R, Sws,

and uws

8.47 5.13 � 0.31 0.90
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commonly accepted that if R is higher than 0.8, the predictive

model has performed fairly well (Hair et al. ). All our

models have passed this threshold. The obtained results

reveal that ANNs outperformed the two other powerful

machine learning algorithms (e.g., C&R-T and GENLIN).

The lowest values of MAE, and the highest values of R for

each model and fold are shown in bold in Table 3.

Application of ANN model

In our artificial neural network model, we employed the

multilayer perceptron (MLP) type of network algorithms

with one hidden layer that has between 5 and 10 neurons

to predict the target variable, since this specific combination

has provided higher results in our preliminary analysis. First

of all, the network architecture and ANNmodel were gener-

ated using all the eight input variables which are explained

in the previous section. Then, as seen in Table 4, four per-

formance criteria explained in the previous section were

performed to evaluate our ANN model. The average

values of RMSE, MAE, RME, and R were calculated as

7.53 N/m2, 4.89 N/m2, 0.27 N/m2 mm, and 0.92 N/m2,

respectively, for the ANN model. Our ANN model has

showed slightly better performance than the other models.

Determination of the contribution of each predictor in

predicting the shear stress the sensitivity analysis procedure

defined previously was accepted. The ranking of the
normalized predictor variables’ importance was calculated

during the testing studies and demonstrated in Figure 6. As

shown in Figure 6(a), T/H, T/R, and Sws are the most impor-

tant variables for our ANN model. T/H has a predictor

importance of 0.23 and is better than T/R, which has a pre-

dictor importance of 0.22, with small differences. Sws has a

predictor importance of 0.16.

When all the pairs of predicted and observed shear

stress, τ0, from all measured stations are drawn on the

same figure, we obtain the linear relationship between the

predicted and observed shear stress, τ0, in Figure 7. It is

clear from the figure that the predictions of the ANN are

less scattered and closer to the exact line (45 W) than the

C&R-T and GENLIN models with small difference. Particu-

larly when the observed shear stress values are between 0

and 20 N/m2, the predicted and observed values are quite

consistent. As seen in Table 3, for our ANN model, mini-

mum MAE and maximum R values are in fold 6. The data

set in fold 6 is between 0.630 and 19.60 N/m2. When the

observed shear stress values are bigger than 20 N/m2, pre-

dicted values start to deviate from the exact line (45 W).

Application of C&R-T model

For C&R-T, a single, standard model was generated to deter-

mine the relationships between fields using six input

parameters (Table 4). The standard models are easier to

interpret. The tree depth for the current node is the maxi-

mum tree depth. As default, it was selected as 5. There are

three different impurity measures (Gini, twoing, and the

least-squared deviation) used to find splits for C&RT

models. Gini index was utilized to find splits in this study.



Figure 6 | The predictor importance for machine learning models. Figure 7 | The scatter plots of the observed and predicted values by ANN, C&R-T, and

GENLIN models.
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As given in Table 3, our C&RT model has the mean R

value of 0.90± 0.05 with the mean MSE value of 4.95± 1.32

for each fold. For our C&RT model, minimum MAE is 2.78

in fold 8 and maximum R value is 0.97 in fold 10. The data

set in fold 10 is between 0.40 and 57.60 N/m2. C&R-T has

the RMSE and RME values of 7.82 and 0.12 N/m2 as shown
in Table 4. As presented in Figure 6(b), uws is the most impor-

tant variable that has an importance of 0.62 in our C&R-T

model. The variables Sws and T/H have the values of 0.19

and 0.11, respectively. As seen in the graphs in Figure 7(b), it

can be understood that the predictions of the C&R-T model

are less scattered and close to the exact line (45 W). As in the
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ANNmodel, when the observed shear stress values are bigger

than 20.0 N/m2, they start to deviate from the exact line (45 W).

The tree shape and themean values for fold 5 (predictions) are

demonstrated inTable 5.As seen in the table, thefirst branchof

the tree isuwswhichhas the highest importance at 0.70 for fold

5 and the critical uws value is 1.087 m/s. The second branch of

the tree, T/H, has the second highest importance as 0.13 for

fold 5. Its critical value is 13.341.

Application of GENLIN model

All the eight inputs were used to predict the target value,

shear stresses, τ0 in our GENLIN model. There are six differ-

ent log-likelihood functions such as normal, inverse

Gaussian, gamma, negative binomial, poisson, and binomial

(m) for probability distribution in the GENLIN model.

Normal distribution was selected in this study. Canonical

and default link functions for probability distributions were

tabulated in the GENLINmodel guide. Identity link function

as canonical link was determined for normal distribution in

the GENLIN model. Several statistics (deviance, Pearson

chi-square, maximum likelihood estimate, and fixed value)

are calculated to evaluate goodness-of-fit of a presented

GENLIN model. The maximum likelihood estimate as

scale parameter method was performed in this study.

As shown in Table 3, theGENLINmodel has themeanR

value of 0.90± 0.04 with the meanMAE value of 5.13± 1.32

for each fold. In our GENLINmodel, minimumMAE is 2.87

andmaximumR value is 0.95 in fold 5. The data set in fold 5 is

between 0.90 and 32.40 N/m2. GENLIN has the RMSE and

RME values of 8.47 and �0.31 N/m2, as shown in Table 4.
Table 5 | Tree shape and the means of the predicted values for fold 5 in C&R-T model

uws� 1.087 [Ave: 6.235, Effect: �7.749]

T/H� 13.341 [Ave: 2.186, Effect: �4.049]� 2.186

T/H> 13.341 [Ave: 10.165, Effect: 3.93]

y/T� 0.798 [Ave: 11.933, Effect: 1.768]� 11.933

y/T> 0.798 [Ave: 3.344, Effect: �6.821]� 3.344

uws> 1.087 [Ave: 37.583, Effect: 23.599]

Sws� 0.010 [Ave: 30.989, Effect: �6.594]

T/H� 27.363 [Ave: 40.091, Effect: 9.102]� 40.091

T/H> 27.363 [Ave: 23.708, Effect: �7.281]� 23.708

Sws> 0.010 [Ave: 67.256, Effect: 29.673]� 67.256
As presented in Figure 6(c), T/R is the most important

variable that has an importance of 0.38 in our GENLIN

model. The variables uws and Sws have the values of 0.30

and 0.28, respectively. As shown in Figure 6(c), it can be

seen that the predictions of the GENLIN model are less scat-

tered and close to the exact line (45 W). As in other proposed

models, when the observed shear stress values are bigger

than 20.0 N/m2, they start to deviate from the exact line (45 W).
CONCLUSION

Shear stress distribution is a precious parameter for the

investigations of turbulence, sediment transport, and river

management. Determining shear stress distribution has

been considered a serious problem. This study demonstrates

that machine learning-based methodology can be performed

to predict the shear stress distribution in small streams.

ANN, C&R-T, and GENLIN were indicated to be the best

by the preliminary studies implemented to obtain which

models perform better. In this study, the eight parameters

were utilized as inputs to the models for predicting the

shear stress distribution in measured verticals. Importance

of predictor variables for these models were revealed. The

performances of prediction methods were calculated using

the 10-fold cross-validation approach. Our ANN model,

which has the R value of 0.92± 0.03 with the RMSE value

of 7.53 N/m2, performed better than the other models in

predicting the shear stress. In fact, the results that C&R-T

and GENLIN are worse have not been presented. It

should be particularly expressed that in cases where the

shear stress is between values of 0–20 N/m2, the estimated

and observed values are quite consistent for all proposed

machine learning models. As mentioned in previous sec-

tions, there are small differences between the models.

Consequently, it is expressed that all these methods may

improve a better understanding of shear stress and its distri-

bution in small streams.
ACKNOWLEDGEMENT

The corresponding author would like to thank The Scientific

and Technological Research Council of Turkey (TUBITAK),



816 O. Genç et al. | Shear stress modeling based on machine learning methods Journal of Hydroinformatics | 17.5 | 2015
since this paper was written during the period of time in

which he was supported by this council to pursue a 1-year

visiting scholarship program at Auburn University, Auburn,

Alabama, USA.
REFERENCES
Ardiclioglu, M., Genc, O., Kalin, L. & Agiralioglu, N. 
Investigation of flow properties in natural streams using the
entropy concept. Water Environ. J. 26, 147–154.

Arlot, S. & Celisse, A.  A survey of cross-validation procedures
for model selection. Stat. Surveys 4, 40–79.

Azamathulla, H. Md. & Jarrett, R. D.  Use of gene-expression
programming to estimateManning’s roughness coefficient for
high gradient streams.WaterResour.Manage. 27 (3), 715–729.

Belgin, K.  Parameter Estimation in Generalized Partial
Linear Models with Tikhonov Regularization. Dissertation
MSc. Thesis, Institute of Applied Mathematics of METU,
Ankara, Turkey.

Bhattacharya, B., Price, R. K. & Solomatine, D. P.  Machine
learning approach to modeling sediment transport. J. Hydrol
Eng. 133 (4), 440–450.

Bonakdari, H. & Levacher, M. D. Numerical study of boundary
shear stress distribution in rectangular open channel flow.
XIèmes Journées Nationales Génie Côtier–Génie 155, 22–25.

Chanson, H., Trevethan, M. & Aoki, S.  Acoustic Doppler
velocimeter (ADV) in small estuary: field experience and signal
post-processing. Flow Measure. Instrument. 19 (5), 307–313.

Christos, S. & Siganos, D. Neural Networks. http://www.doc.
ic.ac.uk/∼nd/surprise_96/journal/vol4/cs11/report.html.

Everitt, B. S. & Skrondal, A.  The Cambridge Dictionary of
Statistics. Cambridge University Press, Cambridge, UK.

Geisser, S.  Predictive Inference. Vol. 55. CRC Press, Boca
Raton, FL, USA.

Genc, O., Kisi, O. & Ardiclioglu, M.  Determination of mean
velocity and discharge in natural streams using neuro-fuzzy
and neural network approaches. Water Resour. Manage. 28,
2387–2400.

Ghosh, S. N. & Roy, N.  Boundary shear distribution in open
channel flow. J. Hydr. Div. 96 (4), 967–994.

Hair, J. F., Anderson, R. E., Tatham, R. L. & Black, W. C. 
Multivariate Data Analysis. Prentice Hall, Upper Saddle
River, NJ, USA.

Han, D., Chan, L. & Zhu, N.  Flood forecasting using support
vector machines. J. Hydroinformat. 9, 267–276.

IBM SPSS Modeler  14.2 User’s Guide.
Javid, S. & Mohammadi, M.  Boundary shear stress in a
trapezoidal channel. Int. J. Eng.-Trans. A 25 (4), 323–332.

Jin, Y. C., Zarrati, A. R. & Zheng, Y.  Boundary shear
distribution in straight ducts and open channels. J. Hydraulic
Eng. 130 (9), 924–928.

Knight, D. W.  Boundary shear in smooth and rough channels.
J. Hydr. Div. 107 (7), 839–851.

Knight, D. W. & Patel, H. S.  Boundary shear stress
distributions in rectangular duct flow. In: Proc. 2nd Int.
Symposium on Refined Flow Modelling and Turbulence
Measurements. Iowa, USA.

Kohavi, R. & John, G. H.  Wrappers for feature subset
selection. Artif. Intell. 97 (1), 273–324.

Leighly, J. B.  Toward a theory of the morphologic significance
of turbulence in the flow of water in streams. Univ. Calif.
Publ. Geogr. 6 (1), 1–22.

Li, E. Y.  Artificial neural networks and their business
applications. J. Inform. Manage. 27, 303–313.

McCullagh, P., Nelder, J. A. & McCullagh, P.  Generalized
Linear Models. vol. 2, Chapman and Hall, London.

Mitchell, T. M.  Machine Learning. McGraw-Hill, New York,
USA.

Nikora, V. I. & Goring, D. G.  ADV Measurements of
turbulence: can we improve their interpretation. J. Hydraul.
Eng. 124 (6), 630–634.

Nyce, C.  Predictive Analytics White Paper, American
Institute for CPCU. Insurance Institute of America, pp. 9–10.

Rice, J. R.  The Algorithm Selection Problem. Computer
Science Technical Reports, report no. 75-153, Purdue
University.

Samandar, A.  A model of adaptive neural-based fuzzy
inference system (ANFIS) for prediction of friction coefficient
in open channel flow. Sci. Res. Essays 6, 1020–1027.

Schlicting, H.  Boundary Layer Theory, 7th edn. McGraw-Hill,
New York, USA.

Shrestha, D. L., Kayastha, N., Solomatine, D. & Price, R. 
Encapsulation of parametric uncertainty statistics by various
predictive machine learning models: MLUE method.
J. Hydroinform. 16 (1), 95–113.

SonTek  Flow Tracker Handheld ADV, Technical Document.
Sumer, B. M.  Lecture Notes on Turbulence. Technical

University of Denmark, 2800 Lyngby, Denmark.
Yang, S. Q.  Depth-averaged shear stress and velocity in open-

channel flows. J. Hydraul. Eng. 136 (11), 952–958.
Yang, S. Q. & Lim, S. Y.  Boundary shear stress distributions

in trapezoidal channels. J. Hydraulic Res. 43 (1), 98–102.
Zedel, L., Hay, A. A., Cabrera, R. & Lohrmann, A. 

Performance of a single-beam pulse-to-pulse coherent
Doppler profiler. IEEE J. Ocean. Eng. 21 (3), 290–297.
First received 19 December 2014; accepted in revised form 13 March 2015. Available online 28 April 2015

http://dx.doi.org/10.1111/j.1747-6593.2011.00270.x
http://dx.doi.org/10.1111/j.1747-6593.2011.00270.x
http://dx.doi.org/10.1214/09-SS054
http://dx.doi.org/10.1214/09-SS054
http://dx.doi.org/10.1007/s11269-012-0211-1
http://dx.doi.org/10.1007/s11269-012-0211-1
http://dx.doi.org/10.1007/s11269-012-0211-1
http://dx.doi.org/10.1061/(ASCE)0733-9429(2007)133:4(440)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2007)133:4(440)
http://dx.doi.org/10.1016/j.flowmeasinst.2008.03.003
http://dx.doi.org/10.1016/j.flowmeasinst.2008.03.003
http://dx.doi.org/10.1016/j.flowmeasinst.2008.03.003
http://www.doc.ic.ac.uk/&sim;nd/surprise_96/journal/vol4/cs11/report.html
http://www.doc.ic.ac.uk/&sim;nd/surprise_96/journal/vol4/cs11/report.html
http://www.doc.ic.ac.uk/&sim;nd/surprise_96/journal/vol4/cs11/report.html
http://dx.doi.org/10.1007/s11269-014-0574-6
http://dx.doi.org/10.1007/s11269-014-0574-6
http://dx.doi.org/10.1007/s11269-014-0574-6
http://dx.doi.org/10.2166/hydro.2007.027
http://dx.doi.org/10.2166/hydro.2007.027
http://dx.doi.org/10.1061/(ASCE)0733-9429(2004)130:9(924)
http://dx.doi.org/10.1061/(ASCE)0733-9429(2004)130:9(924)
http://dx.doi.org/10.1016/S0004-3702(97)00043-X
http://dx.doi.org/10.1016/S0004-3702(97)00043-X
http://dx.doi.org/10.1016/0378-7206(94)90024-8
http://dx.doi.org/10.1016/0378-7206(94)90024-8
http://dx.doi.org/10.1061/(ASCE)0733-9429(1998)124:6(630)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1998)124:6(630)
http://dx.doi.org/10.5897/SRE10.558
http://dx.doi.org/10.5897/SRE10.558
http://dx.doi.org/10.5897/SRE10.558
http://dx.doi.org/10.2166/hydro.2013.242
http://dx.doi.org/10.2166/hydro.2013.242
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000271
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000271
http://dx.doi.org/10.1080/00221680509500114
http://dx.doi.org/10.1080/00221680509500114
http://dx.doi.org/10.1109/48.508159
http://dx.doi.org/10.1109/48.508159

